

MAZDA

TUBES ÉLECTRONIQUES

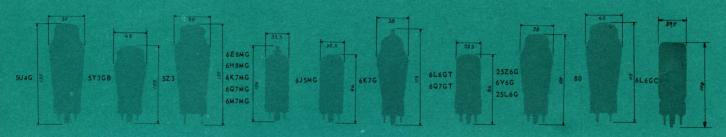
cristons ferrites

SOMMAIRE

	I - IOBES EFECIKONIAOFS	Pages
Types de la série "américaine"	es pour balayages de téléviseurs {	3
- "européenne" (CTT/P)	cs poor burdyages de refeviseors	5
	· · · · · · · · · · · · · · · · · · ·	
	A 11 7 1 1	
	nA" 7 broches	
Serie Zon	nA"	12
Secteur / broches	. 0.1 . 1	
Serie Auto 0/12 V /	et 9 broches	16
	trôle	
	43 cm	
	54 cm	
	48 et 60 cm	
	ices	
	ances	
Zie zie de general des lesses imministrations		47
	II-CRISTONS	
Diodos au gormanium		52
	nducteurs)	
Repetione general des crisions (semi-co	1100100137	00
111	- FERRITES ÉLECTRONIQUES	62
	TERRITES ELECTRORINGOES	02
PUBLICATIONS TECHNIQUES	M A Z D A "Tubes Electroniques"	63
CONDITIONS GENERALES DE	VENTE	64
CONDITIONS OF MERALES DE		
	MATÉRIELS DIVERS	
	MAILRIELS DIVERS	
1 - Lampes de Cadran de poste radio		
2 - Lampes de signalisation à lumi- nescence de Néon ou d'Argon	Voir le catalogue général éclairage de la Lampe MAZDA	
3 - Lampes régulatrices de courant dites "Fer - Hydrogène"	Nous consulter	
4 - Lampes à éclats électroniques	Voir le catalogue des lampes de photo-projection de la Lampe MA	704
	Matériel fourni avec les tubes (nous consulter)	LUA

I Tubes électroniques

Réception

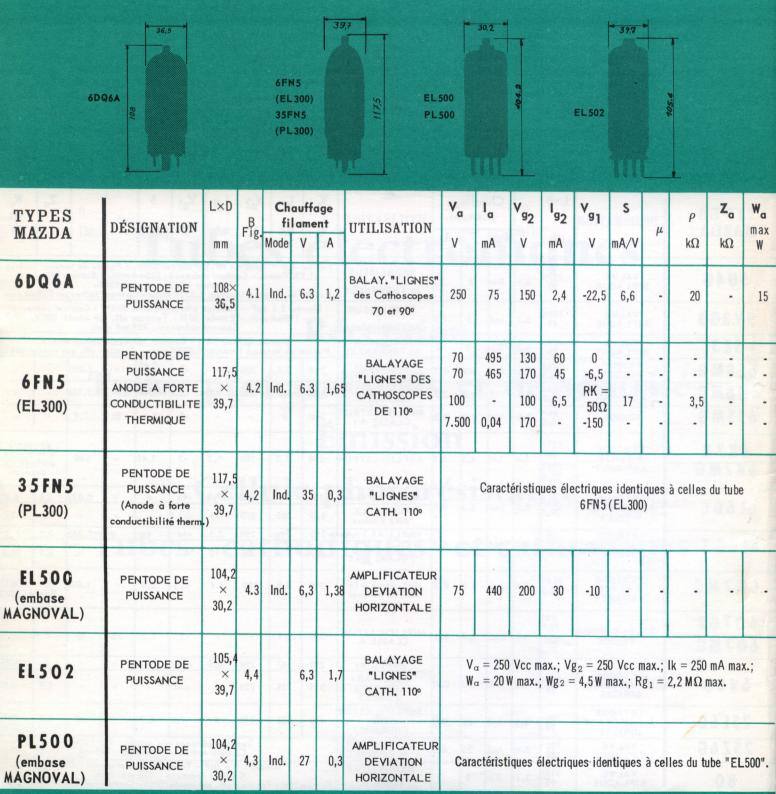

Tubes professionnels et de sécurité
Émission
Cellule photorésistante

Tubes cathodiques et cathoscopes

Types de la série "américaine"

COTES MAXIMALES EN MILLIMETRES

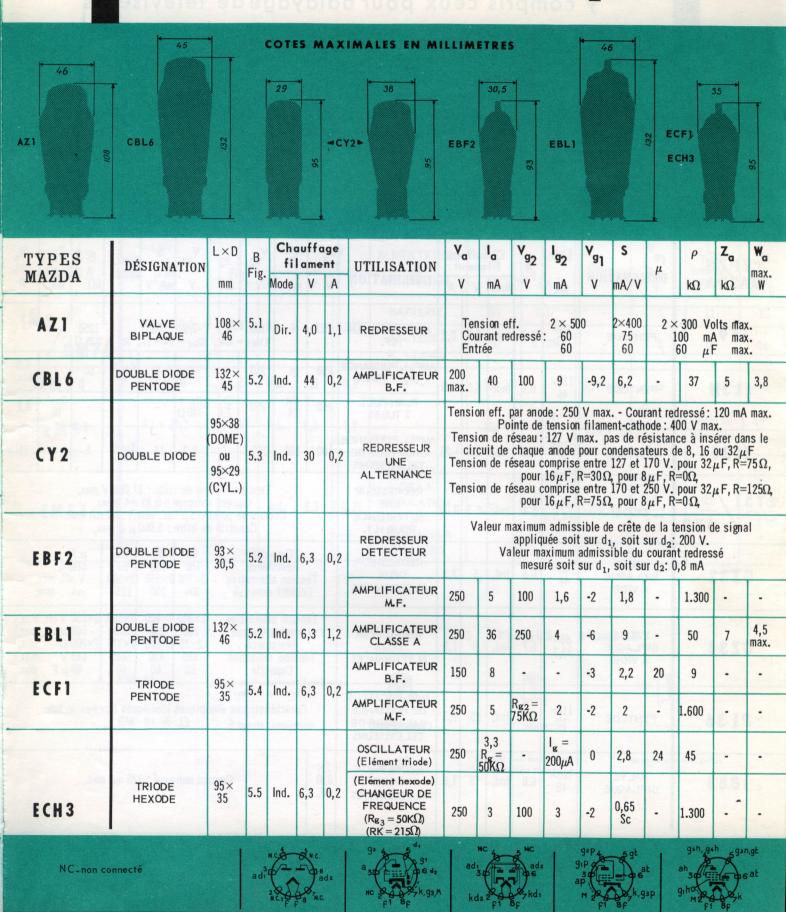
TYPES	DÉSIGNATION	L×D	В		auffa Iame	-	UTILISATION	V _a	la	V _{g2}	l _{g2}	Vgl	S	μ	р	Za	W _a max.
MAZDA	Mad V	mm	Fig.	Mode	٧	Α		٧	mA	٧	mA	٧	mA/V		Ω m		W
5U4G	VALVE BIPLAQUE	137× 50	3.1	Dir.	5	3	REDRESSEUR 2 ALTERNANCES	1.	550 V m	x Co	Tensio	edresse	e: 225m	A max.	nte de te - Entrée V. t redress	: 3 H mi	n
5Y3GB	VALVE BIPLAQUE	105× 45	3.2	Ind.	5	1,7	REDRESSEUR 2 ALTERNANCES			4μF -	Tensior Entrée:	eff. p		e: 400 V	Cour		
5Z3	VALVE BIPLAQUE	137× 50	3.3	Dir.	5	3	REDRESSEUR 2 ALTERNANCES	Point	Ente e de te	rée: 4µF	ou 20 nverse:	H - Cou	max	ressé: Tensio	250mAn n eff. po	nax	e: 500 V.
6E8MG	TRIODE HEXODE	104× 33,5	3.6	Ind.	6.3	0,3	CHANGEUR DE FREQUENCE	250	2,3	100		-2	0,65 \$c		1.250		
6H8MG	DOUBLE DIODE PENTODE	104× 33,5	3.8	Ind.	6.3	0,3	AMPLIFICATEUR CLASSE A	250	5,7	100	1,8	-2	2,1		1.100		
6J5MG	TRIODE	94× 33,5	3.9	Ind.	6.3	0,3	AMPLIFICATEUR CLASSE A 1	250	9			-8	2,6	20	7,7		di.
6 K 7 G 6 K 7 M G	PENTODE A PENTE VARIABLE	115× 38 104× 33,5	3.4	Ind	6.3	0,3	AMPLIFICATEUR	250	7,0	100	1,7	-3	1,45		800	à la cath	réunie broche ode du pport
61.6GC	TETRODE A FAISCEAUX DIRIGES	108× 39,7	3.5	Ind.	6.3	0,9	AMPLI. A1 1 tube PUSH-PULL AB2 2 tubes	250 360	79 205	250 270	7,3 16	-14 -22,5	6		0,022	2,5	6,5
6L6GT	TETRODE A FAISCEAUX DIRIGES	84× 32,5	3.5	Ind.	6.3	0,9	AMPLI. A1 1 tube PUSH-PULL POLAR. FIXE	250 400	79 124	250 250	7,3 12	-14	6		0,022	2,5 8,5	6,5 26,5
6M7MG	PENTODE A PENTE VARIABLE	104× 33,5	3.4	Ind.	6,3	0,3	AMPLI. A (g3 réunie à la broche cathode du support)	250	6,5	100	1,7	-2,5	2,4		1.500	RK Rg ₂	= 320Ω = 90KΩ
6Q7GT 6Q7MG	DOUBLE DIODE TRIODE	84× 32,5 104> 33,5	3.7	Ind.	6,3	0,3	AMPLIFICATEUR CLASSE A	250	1,1			-3	1,2	70	58	YU:	JAS
以為 納自然於以一	TETRODE	Vijan	ijaal	255			AMPLI. A1	250	47	250	6,5	-12,5	-	39 •		5	4,25
6 V 6 G	A FAISCEAUX DIRIGES	108× 38	3.5	Ind.	6.3	0,45	AMPLI. AB ₁ PUSH-PULL 2 TUBES	315	35	225	6	-13	SAZZA	•		8,5	5,5
25L6G	TETRODE A FAISCEAUX DIRIGES	108× 38	3.5	Ind	25	0,3	AMPLIFICATEUR DE PUISSANCE	110	54	110	9	-7,5	8,2		10	1,5	2,1
25Z6G	VALVE BIPLAQUE	108×	3.1	Ind	25	0,3	REDRESSEUR 1 ALTERNANCE			Ter	sion ef	ficace edress	par ano é maxim	de : 12 ium : 1	6 Volts 00 mA	Uć	17
80	VAL VE BIPLAQUE	119× 45	3.1	1 Dir	5	2	REDRESSEUR 2 ALTERNANCES	Entrée		C	ourant i	redress	é: 110	mA m	node: 40 ax. nt redress		mA max.



MAZDA

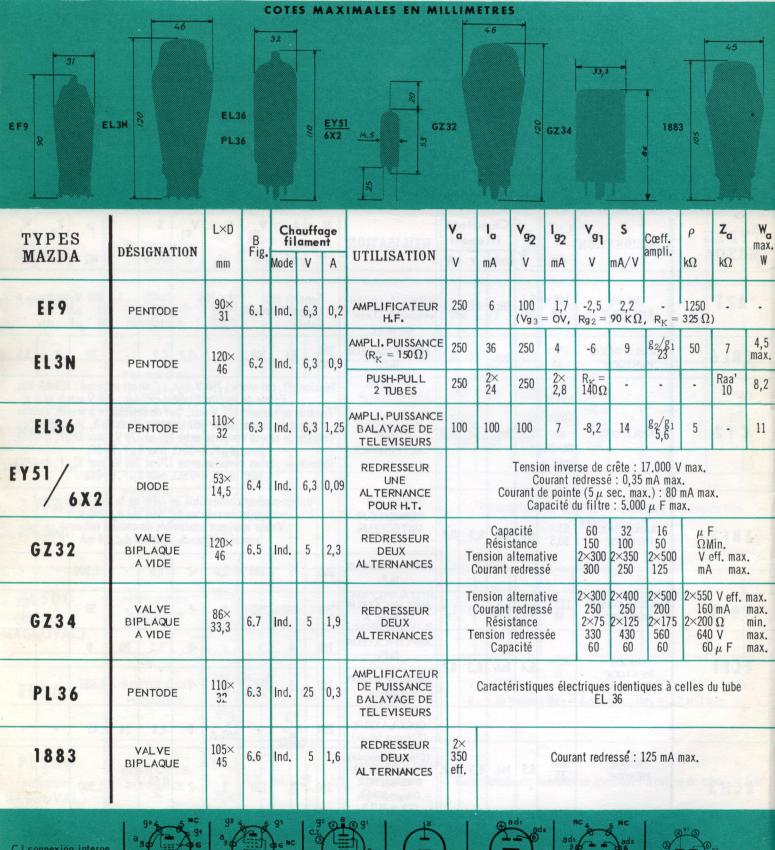
Types de la série "américaine" pour balayage de téléviseurs

COTES MAXIMALES EN MILLIMETRES



Types de la série "européenne"

CONTACTS FACE


B 5.5

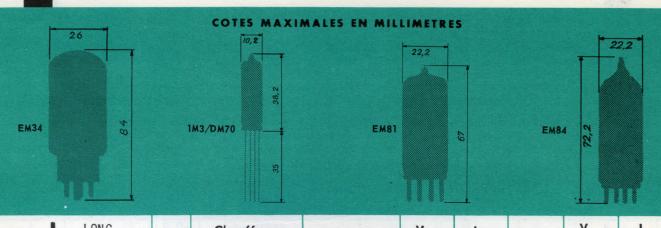
L'OBSERVATEUR

MAZDA

Types de la série "européenne"

y compris ceux pour balayage de téléviseurs

C L-connexion interne à ne pas utiliser



IB 6.3 | B 6.4 | B 6.5 CONTACTS FACE A L'OBSERVATEUR

Indicateurs d'accord

TYPES MAZDA	LONG. × DIAM.	B Fig.	f	auffa i lame	nt	ALIMENTATION OU UTILISATION	V _a	l _a	Cible	Y ₉₁ Max.	Trait lumineux	y _{g1} V
A HOUR LOOK HOUSE	mm		Mode	٧	Α	UTILISATION	V	mA		٧	mm - L	pour L=0
1M3/	38,2 × 10,2	7.1	Dir.	1,4	0.025	BATTERIE	85	0,17		0	11	-10
DM70	30,2 ~ 10,2	7.1	DII.	1,4	0,025	SECTEUR $R_a = 1.8 M\Omega$	250	0,105	•	0	10	-34
EM34	84 × 26	7.2	Ind.	6,3	0,2	erend . 181,0(1) Serveren	250	1.	0,75 mA	0	•	
EM 81	67 × 22,2	7.3	Ind.	6,3	0,3		250	0,37	250 V	<u>-1</u> -10,5	Angle de déviation	{ 65° 5°
EM 84	72,2 × 22,2	7.4	Ind.	6,3	0,21	CONTROLE DE LA MODULATION ET INDICATEUR D'ACCORD	250	0,45	250 V	<u>0</u> - 22	21 0	1 mA 1,8 mA

DES **DIFFERENTS ASPECTS PLAGES** D'OMBRE

EM 81

EM 84

I seul secteur d'ombre se fermant au centre

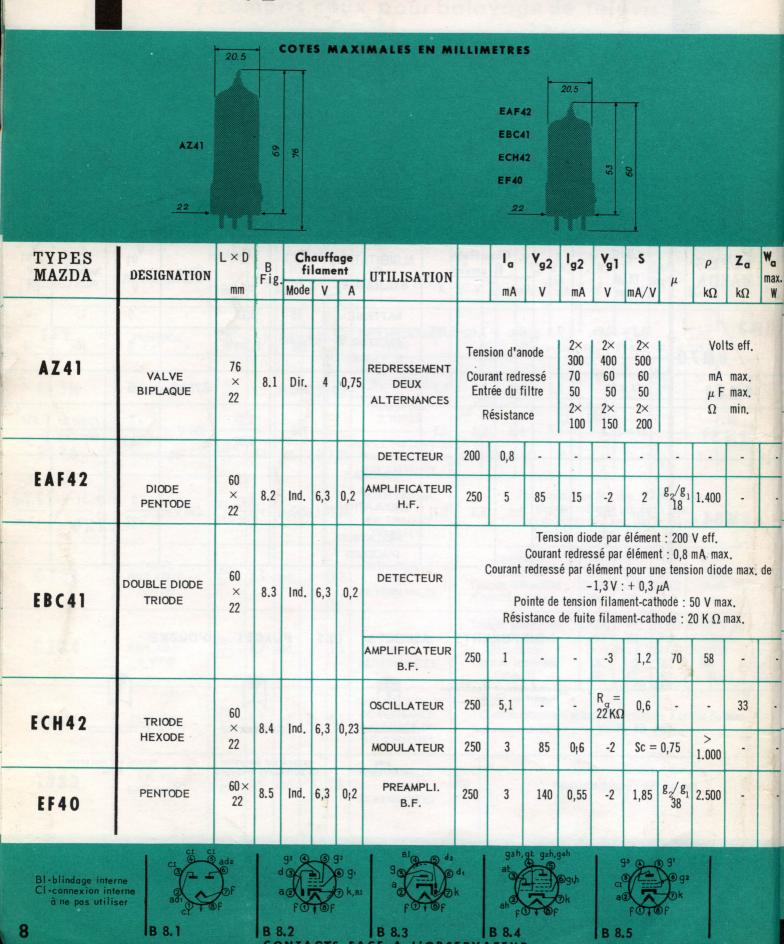
1 bande lumineuse

pas d'émission

accord sur émission de puissance moyenne

accord sur émission forte

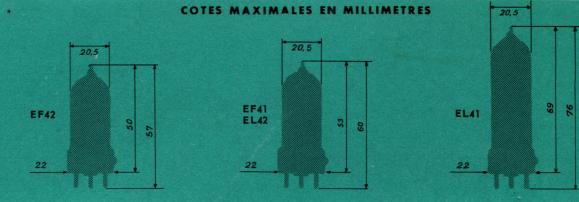
Ef-cible Ec-élément du contrôle C1-connexion interne à ne pas utiliser



B 7.1

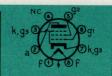
CONTACTS FACE A L'OBSERVATEUR

MAZDA


Types Medium "Alternatif"

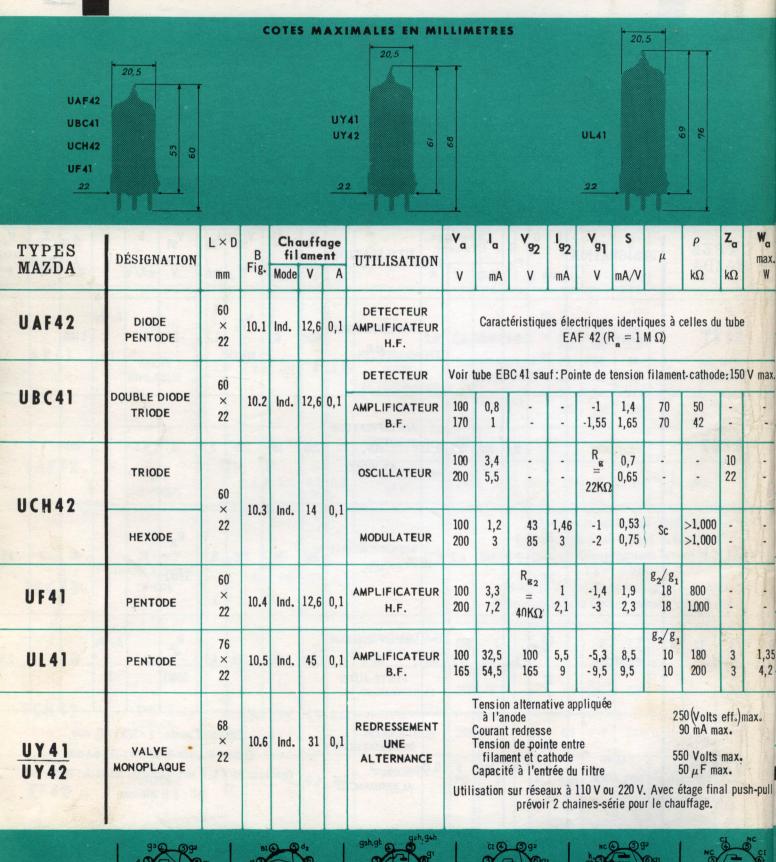
Types Medium "Alternatif"

(SUITE)


TYPES MAZDA	DÉSIGNATION	L×D	B Fig.	Che fil	auffe ame	age nt	UTILISATION	V _a	I _a	V _{g2}	I _{g2}	V _{g1}	S mA/V	μ	ρ kΩ	Z _a kΩ	W _a max. W
		,,,,,,		Would		'n			III/		IIIA		III/V, V		Na2	NAL	Tall and
EF41	PENTODE	60 × 22	9.1	Ind.	6,3	0,2	AMPLIFICATEUR	250	6	R _{g2} = 90KΩ	1,7	-2,5	2,2	g ₂ /g ₁ 18	1.000		*
EF42	PENTODE	57 × 22	9.2	Ind.	6,3	0,33	AMPLIFICATEUR H.F. ET VIDEO	250	10	250	2,3	-2	9,5		440		
EL41	PENTODE	76 × 22	9.3	Ind.	6,3	0,71	AMPLIFICATEUR B _v F _v	250	36	250	5,2	R _K = 170Ω	10	•	40	7	3,9
EL42	PENTODE	60 × 22	9.1	Ind.	6,3	0,2	AMPLIFICATEUR B.F. POSTE-AUTO	250	26	225	4,1	R _K 360Ω	3,2	g ₂ /g ₁	90	9	2,8
GZ41	VALVE BIPLAQUE	60 × 22	9.4	Ind.	5	0,75	REDRESSEMENT 2 ALTERNANCES		Conde		nt d'ai : 4μF	l'anode node de max (pointe Courant	: 210 m	A max.		ax.

NC - Non connecté Bl - Blindage interne Cl - Connexion interne à ne pas utiliser

B 9.1



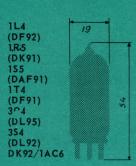
MAZDA

Types Medium"Tous courants"

C 1-connexion interne à ne pas utiliser

10

9 FOTOF



| B 10.3 | B 10.4 | B 'CONTACTS FACE A L'OBSERVATEUR

Types miniatures "Batteries"

"SÉRIE 50 mA" 7 BROCHES

COTES MAXIMALES EN MILLIMETRES

TYPES MAZDA	DÉSIGNATION	L×D	B Fig.		auff d l ame		UTILISATION	Va	l _a	v _{g2}	I _{g2}	V _{g1}	S	μ	ρ	Za	W _a
E BRITISH		mm	rig.	Mode	٧	Α		٧	mA	V	mA	٧	mA/V		kΩ	kΩ	W
1L4 (DF92)	PENTODE	54×19	11.1	Dir.	1,4	0,05	AMPLIFICATEUR H.F.	90 90	4,5 2,9	90 67,5	2,0 1,2	0	1,025 0,925		350 600		
1R5 (DK91)	HEPTODE	54×19	11.2	Dir.	1,4	0,05	CHANGEUR DE FREQUENCE	90 67,5	1,6	67,5 67,5	3,2	V _{g3} = 0 V _{g3} = 0	0,3	Sc	600 500	R _g =0,	1 ΜΩ
1S5 (DAF91)	DIODE PENTODE	54×19	11.3	Dir.	1,4	0,05	DETECTEUR AMPLIFICATEUR H.F.	90 67,5	2 1,6	90 67,5	0,5 0,4	0	0,65 0,625	• 1	500 600		
1T 4 (DF 91)	PENTODE A PENTE VARIABLE	54×19	11.1	Dir.	1,4	0,05	AMPLIFICATEUR H.F.	90 67,5	3,5 3,4	67,5 67,5	1,4 1,5	0	0,9 0,875		500 250		
3Q4 (DL95)	PENTODE	54×19	11.4	Dir.	2,8 1,4	0,05 0,1	AMPLIFICATEUR B.F.	90 90	7,7 9,5	90	1,7 2,1	-4,5 -4,5	2 2,15		120 100	10 10	0,24 0,27
354 (DL92)	PENTODE	54×19	11.4	Dir.	2,8 1,4	0,05 0,1	AMPLIFICATEUR B.F.	90 90	6,1 7,4	67,5 67,5	1,1 1,4	-7 -7	1,425 1,575	•	100 100		0,235 0,27
117Z3N	VALVE MONOPLAQUE	67×19	11.5	Ind.	117	0,04	AVEC CONDENSATEUR A L'ENTREE DU FILTRE			Tensi Iressé :	on inve 90 mA	rse de max	: 117 V pointe : Courant limentat	350 V de poi	max. nte:54		ıax.
DK92/ 1AC6	HEPTODE	54×19	11.6	Dir.	1,4	0,05	CHANGEUR DE FREQUENCE	63,5 85	0,7 0,65	63,5 60	0,15 0,14	V _{g3} = 0 V _{g3} = 0	0,3	Sc	900 1.000	R _{g1} =27	ΚΩ

NC non connecté PMf point milieu du filament

B 11.1

B 11.2 | B 11.3

Types miniatures "Batteries"

"SÉRIE 25 mA" 7 BROCHES

COTES MAXIMALES EN MILLIMETRES

TYPES MAZDA	DÉSIGNATION	L×D	B Fig.		auffo I ame		UTILISATION	Va	l _a	v _{g2}	I ₉₂	V _{g1}	S	μ	ρ	Z _a	W _a
MAZDA		mm	rig.	Mode	٧	Α	A NA	٧	mA	٧	mA	٧	mA/V		kΩ	kΩ	
	DIODE						DETECTEUR	۷	inv. cri	ête : 10	Coura	ant dic	ourant o	de crêt ,2 mA	e:1,2	mA m	ax.
DAF96	PENTODE	54×19	12.1	Dir.	1,4	0,025	AMPLIFICATEUR B.F. (PENTODE)	64 85	42 64	R_{g_2} = 2,7 $M\Omega$	13 21	R_{g_1} = 2,1 $M\Omega$			•	1000 1000	0,03
		34^13	12.1	UII.	1,4	0,025	AMPLIFICATEUR EN TRIODE G ₂ reliée à A	64 85	38 56		•	R _{g1} = 2,2 MΩ		•		1000 1000	
								45	0,85	45	0,28	0	0,65	g ₂ /g ₁ 18	1	•	
DF96	PENTODE	54×19	12.2	Dir.	1,4	0,025	AMPLIFICATEUR H.F.	64	1,65	R_{g_2} = $0k\Omega$	0,55	0		g ₂ /g ₁ 18	0,7		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							85	1,65	R _{g2} 39 kΩ	0,55	0	0,85	g ₂ /g ₁ 18	1		0,25 _ max.
DK96							CHANGEUR	45	0,56	29,5	1,3	Rg1	Sc = 0,325	-	550		
	HEPTODE	54×19	12.3	Dir.	1,4	0,025	DE FREQUENCE (Oscillateur séparé)	64	0,55	35	1,6	27 kΩ V _e =	Sc = 0,275	•	750		
							(Oscillateur separe)	85	0,6	35	1,5	4 V eff.	Sc = 0,300	•	800		•
							AMPLIFICATEUR CLASSE A	64	3,5	64	0,65	-3,3	1,3	g_2/g_1	170	15	0,1
							(filament en paral.)	85	5	85	0,9	-5,2	1,4	7	150	13	0,2
	PENTODE	54×19	12.4	Dir.	1,4	0,05	PUSH-PULL CLASSE AB	67,5	2 × 3,4	R _K = 470 Ω	2 × 0,95	V _e = 5,7V eff.	F	Raa* =	20 kΩ		0,22
DL96	TENTODE	J4^1J	12.4	DII.	1,4 2,8	0,025	(filament en paral.)	90	2 × 4,75	R _K = 560 Ω	2 × 1,50	V _e = 7,9V eff.	F	?aa₁ =	20 kΩ		0,42
						# 3	CLASSE B	61,5	0,7	61,5	2× 0,95	-5,8	F V _e	Raa' = 5,7	20 kΩ V eff	(2)	0,22
							(filament en paral.)	81,5	2× 5	81,5	2× 1,3	-8,5	V	Raat = 7,5	20 kΩ 9 V eff		0,4

C l-connexion interne à ne pas utiliser.

Gr - f, ga, Bi



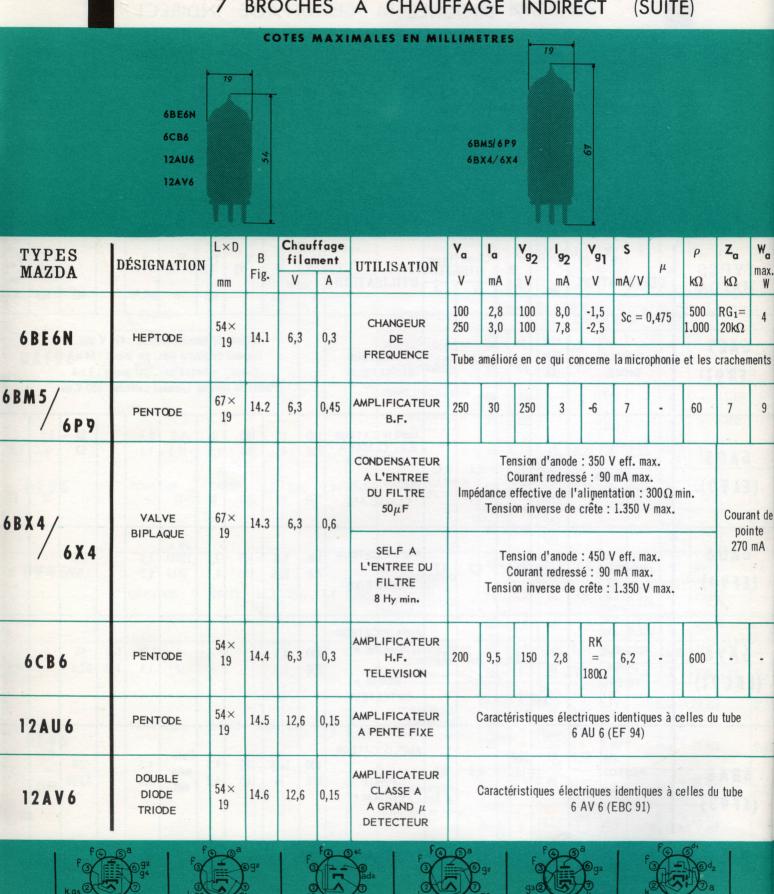
PMf-point milieu du filament

Types miniatures "Secteur"

BROCHES A CHAUFFAGE INDIRECT

TYPES MAZDA	DÉSIGNATION	L×D mm	B Fig.	Chau filar V	ffage nent A	UTILISATION	v _a	I _a	v _{g2}	I _{g2}	V _{g1}	S mA/V	μ	ρ kΩ	$\mathbf{Z_a}$ $\mathbf{k}\Omega$	W _a max. W
6AL5 (EB91)	DOUBLE DIODE	45× 19	13.2	6,3	0,3	DETECTEUR REDRESSEUR		Poi	Courant Couran	de po t redre	nsion in inte max essé max i filamen	. par a	node :	54 mA 9 mA	х.	A SEC
6AQ5 (EL90)	TETRODE A FAISCEAUX DIRIGES	67 × 19	13.3	6,3	0,45	AMPLIFICATEUR B.F. CLASSE A A GRAND μ PUSH-PULL B.F. CLASSE AB ₁	180 250 250	29 45 70	180 250 250	3 4,5 5	-8,5 -12,5	3,7 4,1		58 52	5,5 5	2 4,5
6AU 6 (EF 9 4)	PENTODE	54× 19	13.1	6,3	0,3	AMPLIFICATEUR A PENTE FIXE	100 250	5,0 10,6	100 150	2,1 4,3	RK = 150Ω 68Ω	3,9 5,2		500 1,000	À.	3
6AV6 (EBC91)	DOUBLE DIODE TRIODE	54× 19	13,4	6,3	0,3	AMPLIFICATEUR CLASSE A A GRAND μ DETECTEUR	100 250	0,5 1,2			-1 -2	1,25 1,6	100 100	80 62,5		0,5
6BA6 (EF93)	PENTODE	54× 19	13.1	6,3	0,3	AMPLIFICATEUR A PENTE VARIABLE	100 250	10,8 11	100 100	4,4 4,2	Polar. auto- mat.	4,3 4,4		250 1.000	Rκ = 68Ω	3

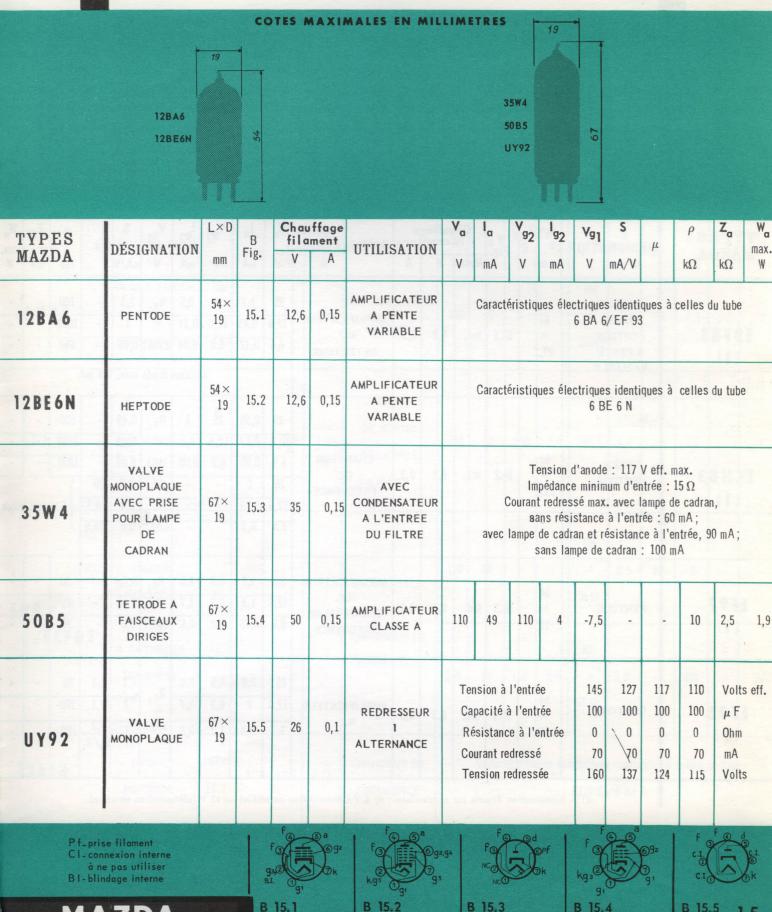
B I-blindage interne


B 13.3

B 13.4 CONTACTS FACE A L'OBSERVATEUR

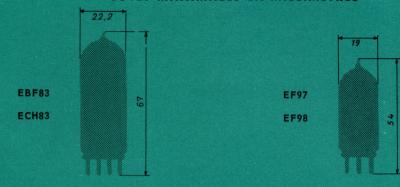
Types miniatures "Secteur"

A CHAUFFAGE INDIRECT **BROCHES**



Types miniatures "Secteur"

7 BROCHES A CHAUFFAGE INDIRECT (SUITE)



MAZDA

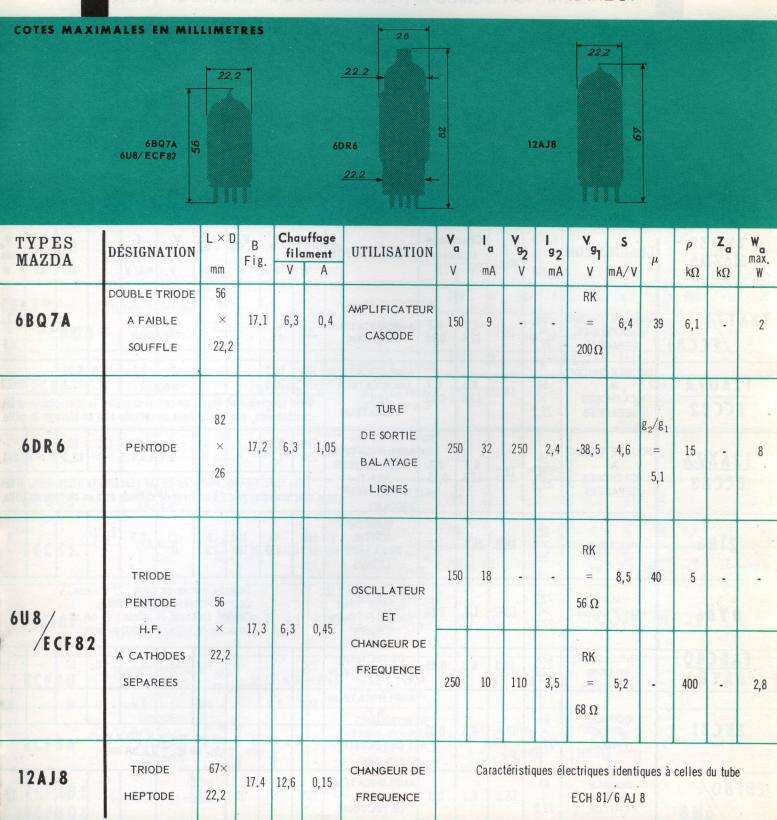
Types miniatures

"SÉRIE AUTO 6/12 V" 7 ET 9 BROCHES

COTES MAXIMALES EN MILLIMETRES

TYPES	DÉSIGNATION	L×D	B Fig.	Ch	auffag lamen	ge nt	UTILISATION	V _a	I _a	V _{g2}	I _{g2}	V _{g1}	S	μ	ρ	Za	W _a
MAZDA	SAME V	mm	rig.	Mode	٧	А	01121011	٧	mA	٧	mA	٧	mA/V		kΩ	kΩ	W
Sid as entres o	DOUBLE	67	milijaj				ar igner	25	1,7	25	0,5	R _{g1}	2,1		200	•	
EBF83	DIODE PENTODE	67 ×	16.1	Ind.	6,3	0,3	AMPLIFICATEUR M.F.	12,6	0,45	12,6	0,14	=	1	•	1000		
(1)	A PENTE	22,2	2012		0,0	0,0	DETECTEUR	6,3	0,12	6,3	0,04	2,2ΜΩ	0,45	•	650	-	
	VARIABLE						SECURAL DEL			(Couran	t diode	max.	0,8 m <i>F</i>	1		
221	11.7 30 3					3188 8.162	NAV NV V	25	0,55	25	1	R _g 1	Sc 0,45		500		
			-				and the second	12,6	0,17	12,6	0,3	=	0,22	•	1500		•
ECH83	TRIODE	67 ×	16.2	Ind.	6,3	0,3	CHANGEUR DE	6,3	0,05	6,3	0,08	1ΜΩ	0,09	•	1300		•
(1)	HEPTODE	22,2	10.2	iiiu.	0,0	0,5	FREQUENCE	25	2			47	2,2	20	1		
						TAS	(ASH0.2 1/2 1/2 1/2	12,6	0,75			Rg 1	1,4	18,3	Elé	ment	triode
	s sinclified is and		81 (2)			213	1.00	6,3	0,3		ig	47ΜΩ	0,8	14,6)		
							AMPLIFICATEUR	25	1,8	6,3	1,5	R _g 1	Sc 0,6		50		
EF97	PENTODE	54 ×	16.3	Ind.	6,3	0,3	H.F.	12,6	1,3	6,3	1,7	=	0,55		25	-	
(1)	TENTODE	19	10.5	IIIu.	0,3	0,3	CHANGEUR DE FREQUENCE	6,3	0,45	3,2	0,6	10ΜΩ		-	30		
	Total H	19 11											1G				
	Au tan II	ea in	1	Lane I				25	2,2	6,3	0,6	D	2,1	4,1	90		
EF98	PENTODE	54 ×	16.3	Ind.	6,3	0,3	AMPLIFICATEUR	12,6	2	6,3	0,7	R _g ₁	2	4,1	200	-	
EF 9 8 (1)	Wales	19	10.3	ma.	0,3	0,3	M.F.	6,3	0,6	3,2	0,2	10ΜΩ	1	3,2 g ₂ /g ₁	100		
	TERMINET IN	7 30,220	1					1	1			1	1		1		

(1) - Alimentation directe par accumulateur de 6 V (alimentation parallèle) ou 12 V (alimentation en série).

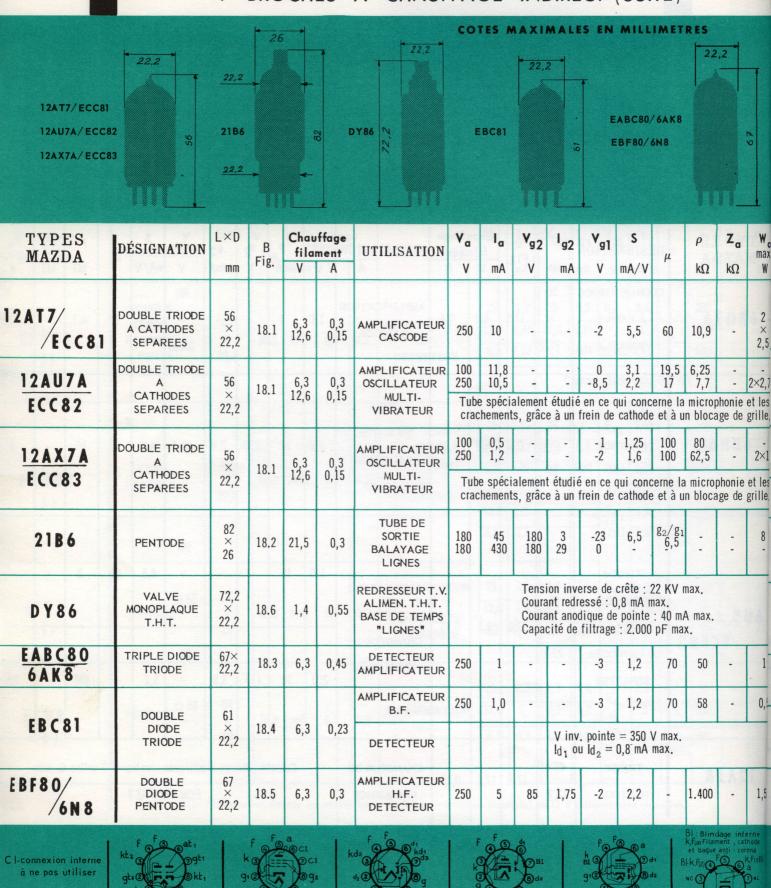


BI - Blindage interne

9 BROCHES A CHAUFFAGE INDIRECT

BI - Blindage interne

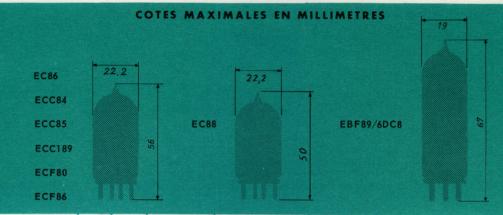
CI - Connexion interne à ne pas utiliser



gs | at gt | B 17.3

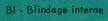
BROCHES A CHAUFFAGE INDIRECT (SUITE)

CONTACTS FACE



L'OBSERVATEUR

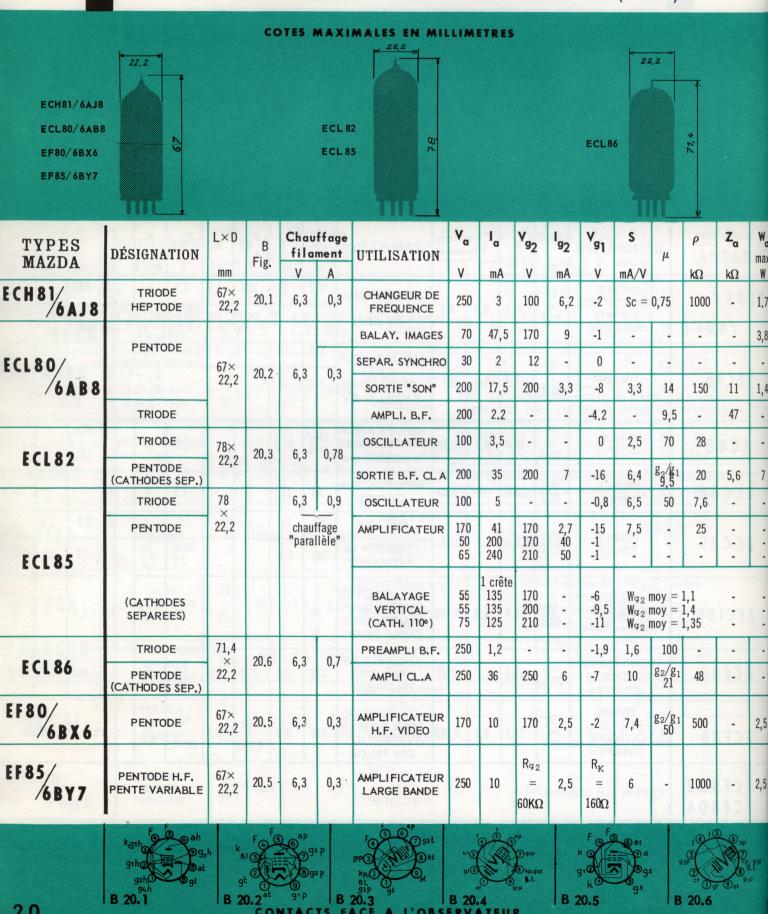
B 18.6

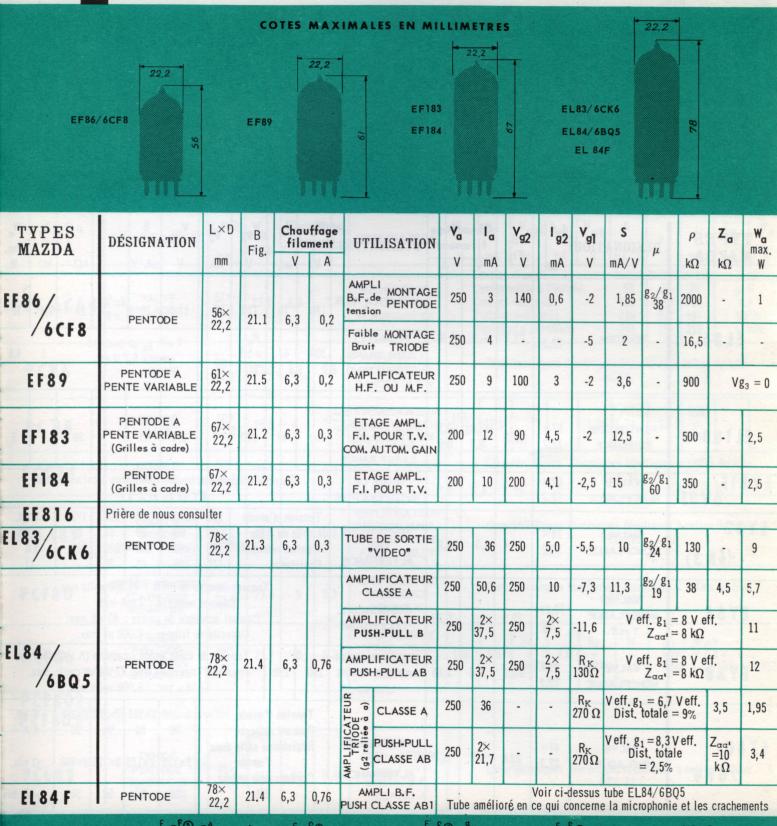

9 BROCHES A CHAUFFAGE INDIRECT (SUITE)

TYPES MAZDA	DÉSIGNATION	L×D mm	B Fig.		uffage ment A	UTILISATION	V _a	I _a	v _{g2}	l _{g2}	V _{g1}	S mA/V	μ	ρ • kΩ	ζ _a	W _a max. W
EBF89/	DOUBLE DIODE PENTODE A PENTE	67 ×	19.1	6,3	0,3	AMPĹIFICATEUR H√F↓	200	11	100	3,3	-1,5	4,5	g_2/g_1 =20	600	1 8	2,25
/6DC8	VARIABLE	22,2				OU M.F.		٧٥	ou Vd	² Id =	$+0,3 \mu$	A - Vd	= 1,3 V	2 = 0.8	illiA;	
		56				AMPLIFICATEUR	175	12	R	_K = 12	25 Ω	14			A	196
EC86	TRIODE	× 22,2	19.2	6,3	0,2	U.H.F. OSCILLATEUR BANDES IV & V	220	12				$R_{a} = R_{g} = I_{g} = I_{g}$	5,6 kΩ 47 kΩ 50 kA			
EC88	TRIODE U.H.F.	50 × 22,2	19.6	6,3	0,19	AMPLIFICATEUR GRJL, A LA MASSE BANDES IV & V	155/ 165	12,5			-1,25	14	65	Réq. = 230 Ω	0.1	
ECC84	DOUBLE TRIODE	56× 22,2	19.3	6.3	0,33	AMPLIFICATEUR CASCODE	90	12			-1,5	6	24			2×2
	DOUBLE	56×			id it Ale	AMPL, H,F,	230	10			-2	6	58	9,7	1,8	
ECC85	TRIODE	22,2	19.4	6.3	0,435	CHANGEUR DE FREQUENCE	250	5,2			Vosc.	Sc 2,3		22	12	2× 2,5
ECC189	DOUBLE TRIODE (Grilles à Cadre)	56× 22,2	19.4	6,3	0,365	AMPLIFICATEUR CASCODE U.H.F. GRANDE PENTE FAIBLE BRUIT	90	15			-1,4	12,5	31	2,5		2× 2
ECF80	TRIODE PENTODE (CATHODES SEPAREES)	56× 22,2	19.5	6,3	0,43	CHANGEUR DE FREQ. POUR TELEVISEUR	170	6,5	170	2,0	R _K 330Ω	Sc 2,2		800	8 1	1,7
ECF86	TRIODE PENTODE CATHODES COMMUNES	56 × 22,2	19.7	6,3	0,385	CHANGEUR DE FREQ. POUR LA PARTIE V.H.F. DES TELEV.	170	8,5	Rg ₂ = 6,8 KΩ	3,0	Rg ₁ 100 KΩ	Sc 5,0	٧	/osc. =	2,3 V	eff.

ECF802 ECF806

Prière de nous consulter



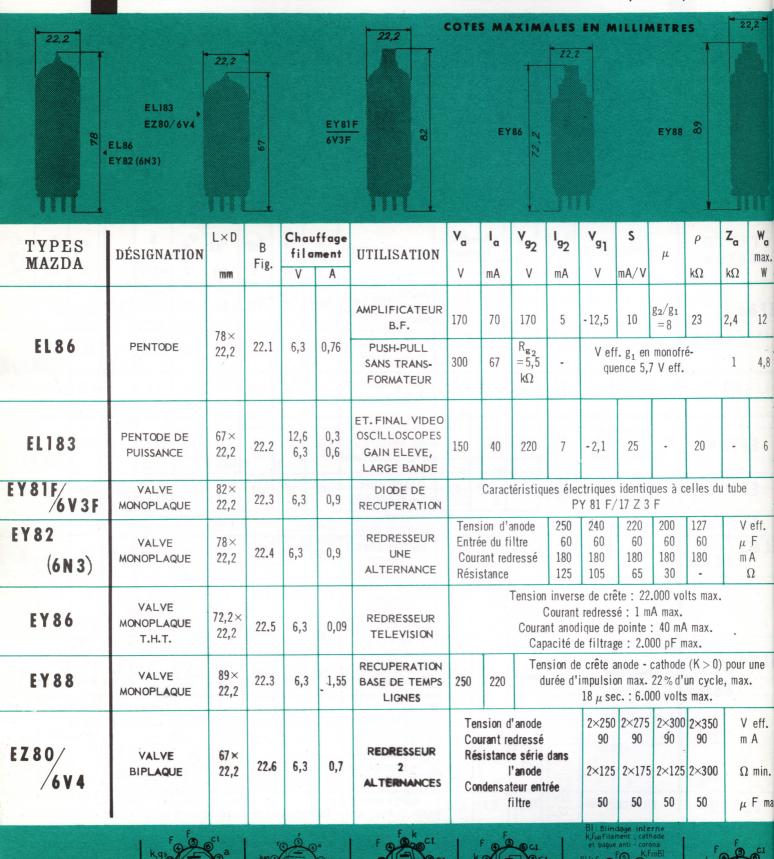


CONTACTS FACE A L'OBSERVATEUR

BROCHES A CHAUFFAGE INDIRECT (SUITE)

9 BROCHES A CHAUFFAGE INDIRECT (SUITE)

Cp, g3p, B.1. Cl - Connexion interne à ne pas utiliser glp

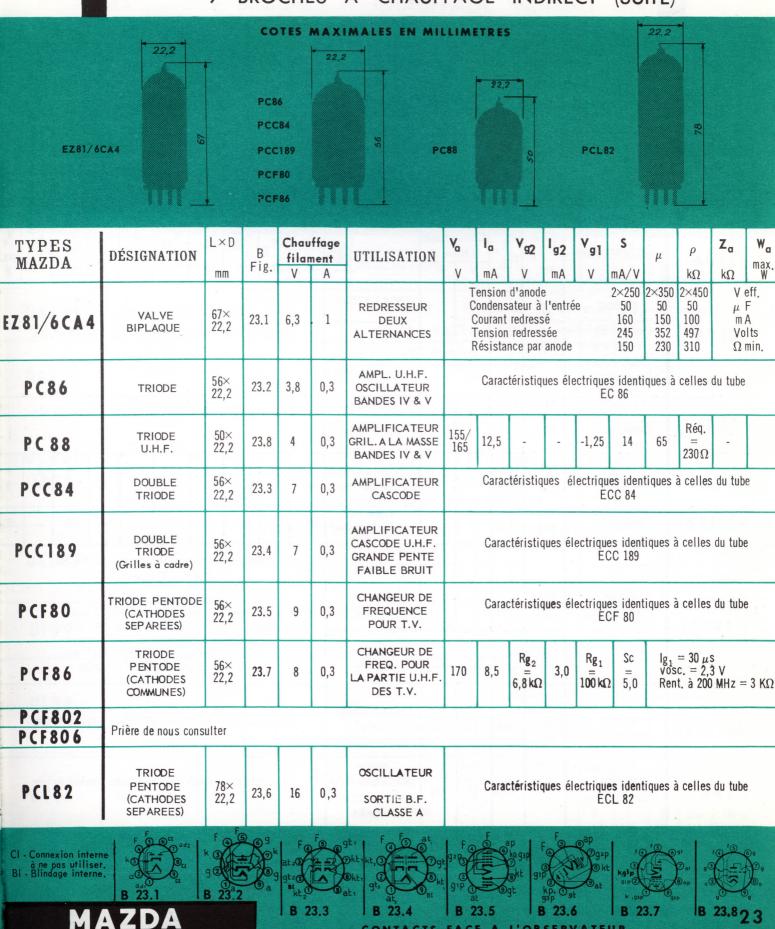


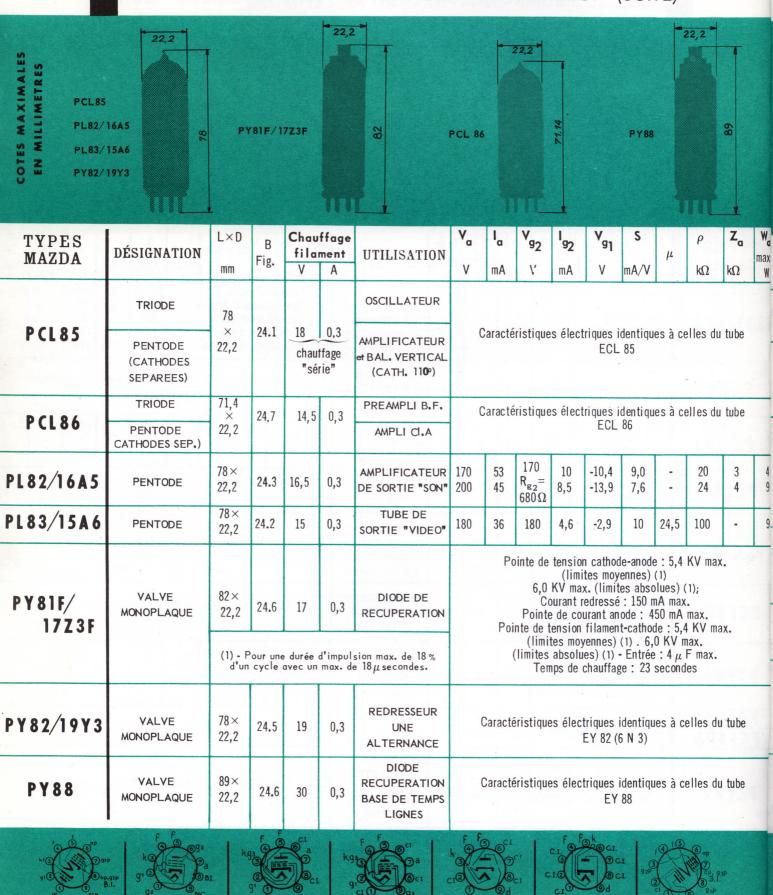
B 21.2

B 21.4
CONTACTS FACE A L'OBSERVATEUR

9 BROCHES A CHAUFFAGE INDIRECT (SUITE)

Cl-connexion interne à ne pas utiliser

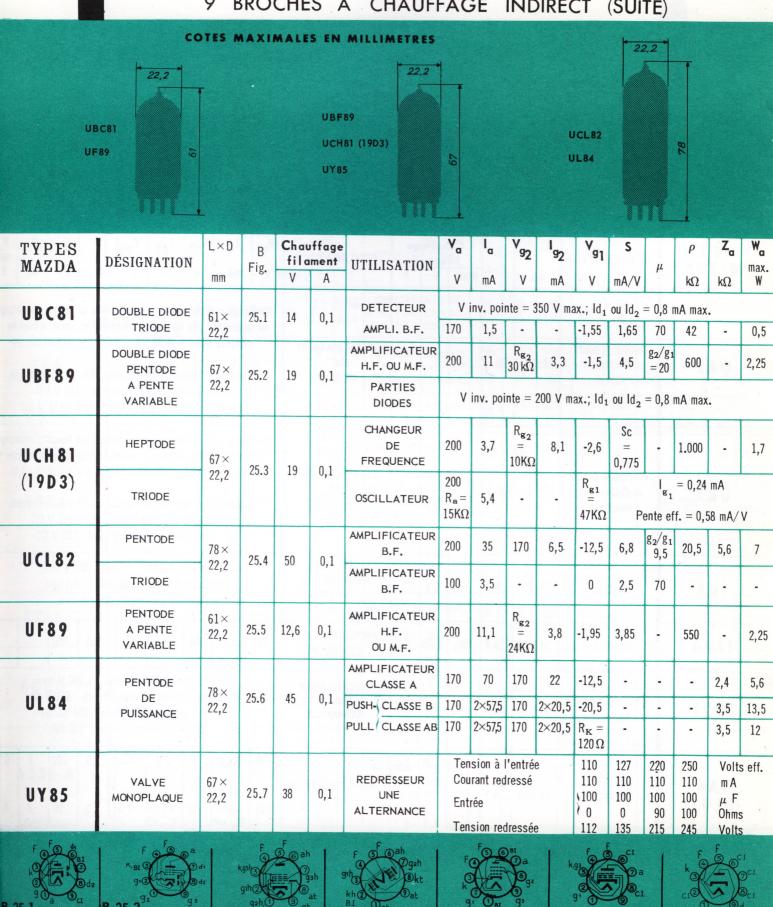


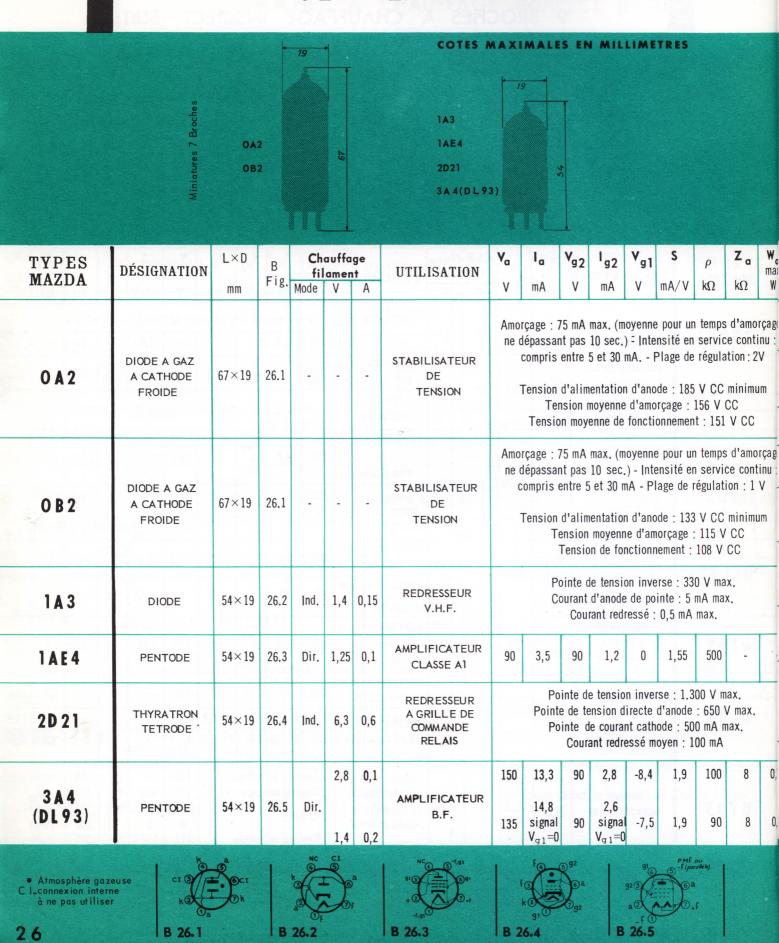


BROCHES A CHAUFFAGE INDIRECT (SUITE)

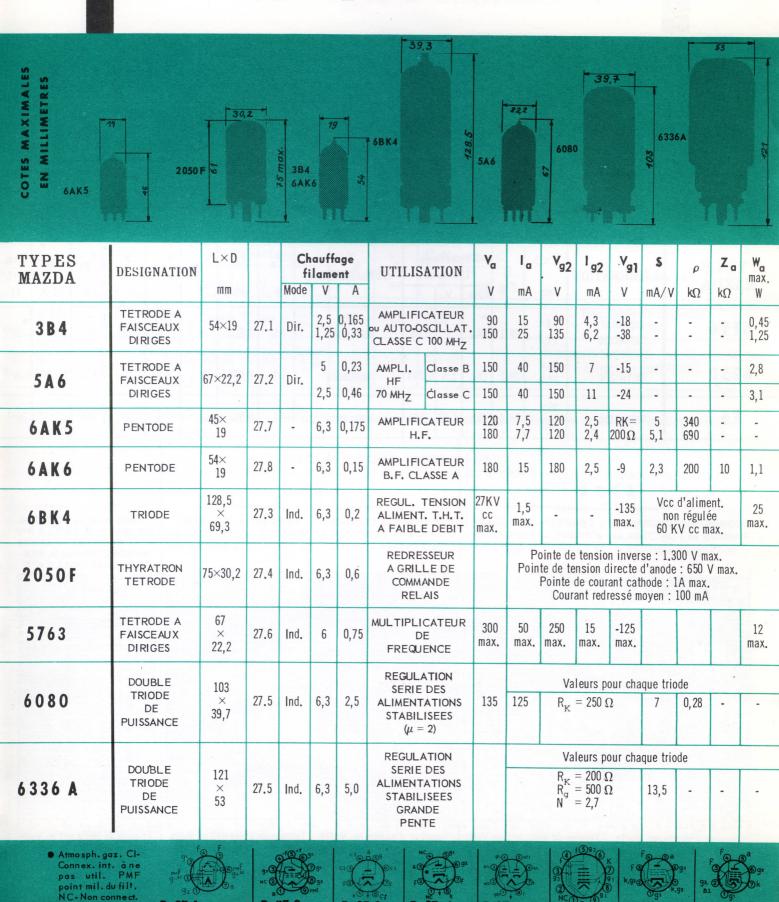
FACE

BROCHES A CHAUFFAGE INDIRECT (SUITE)




BROCHES A CHAUFFAGE INDIRECT (SUITE)

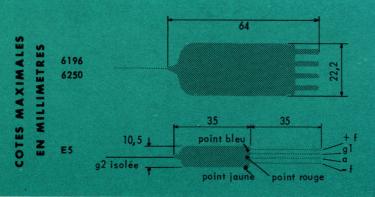
B 25.7


Types professionnels

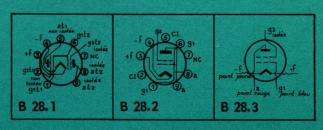
CONTACTS

L'OBSERVATEUR

Types professionnels (SUITE)


B 27.3

MAZDA


B 27.1

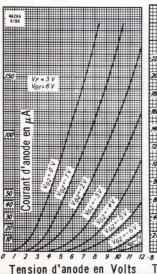
B 27.6 CONTACTS FACE A L'OBSERVATEUR

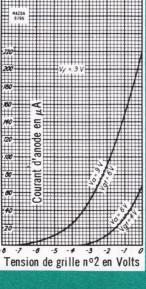
Tubes électromètres

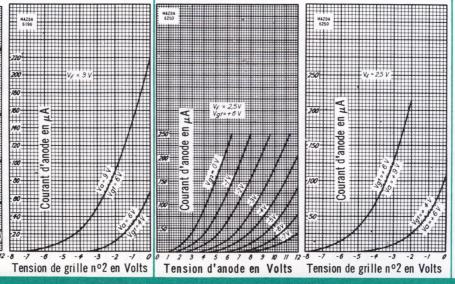
CONTACTS FACE A L'OBSERVATEUR

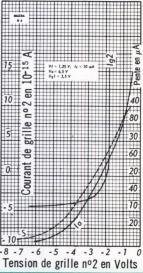
TYPES MAZDA	DÉSIGNATION		B Fig.	fil	auff c	_	UTILISATION	Y _a	l _a	v _{g2}	V _{g1}	S	I _{g1}	92	Req g ₂ is.
		mm	rig.	Mode	٧	Α		V	mA	٧	V	μ A/V	μΑ	isA	Ω .
6196	DOUBLE TETRODE	64× 22,2	28.1	Dir.	3	0,05	MESURES	+9	0,025	-4	+6	> 20	750	2.10-15	>10 ¹⁵ -
6250	TETRODE	64× 22,2	28.2	Dir.	2,5	0,045	MESURES	+9	0,075	-4	+6	50	525	2.10-15	>10 ¹⁵
E 5	TETRODE	35× 10,5	28.3	Dir.	1,25	0,01	MESURES	+6	0,030	-3	+4	15	300	10-14	10 ¹⁵

6 1 9 6

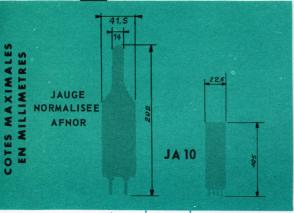

COURBES du COURANT I'ANODE on FONCTION de la TENSION d'ANODE


COURBES du COURANT d'ANODE en FONCTION de la TENSION de GRILLE Nº2 6 2 5 0

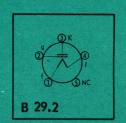

COURBES du COURANT COURBES du COURANT d'ANODE en FONCTION de d'ANODE en FONCTION de la TENSION d'ANODE la TENSION de GRILLE Nº2



COURBES de la PENTE, du COURANT de GRILLE N°2 et du COURANT d'ANODE en FONCTION de la TEN-SION de la GRILLE N°2



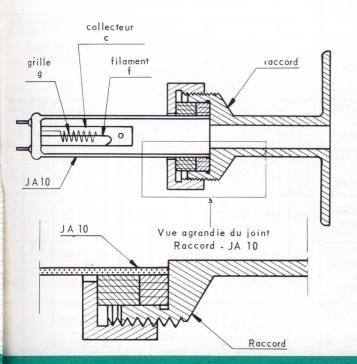
Jauges à ionisation



JA 10 CARACTERISTIQUES GENERALES

Diamètre du filament : 0,08 mm Diamètre intérieur de la grille : 5,25 mm Surface du collecteur : 0,6 cm 2

CONTACTS FACE A L'OBSERVATEUR

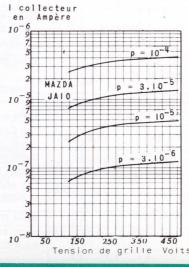

C : Collecteur

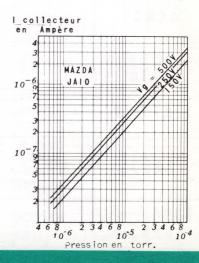
TYPE	L×D	В		Chauffag	ge	٧g	l _g	Collec	teur C	Waste Care Follows
MAZDA	mm	Fig.	Mode	٧	Α	. V	mA	٧	mA	Observations
JA10	105× 22,2	29.1	Direct	3,8 env.	1,2 env.	250	10	-30	*	Pression limite mesurable 10-6 torr
JAUGE NORMALISEE AFNOR	202× 41,5	29.2	Direct	4,5 à 6	4,4 à 5,2	250	1 à 20	-30 à -50		Préciser le diamètre du queusot, variable suivant les installations.

^{*} La tension du collecteur et le courant de grille étant maintenus respectivement à -30 V et 10 mA, le courant du collecteur est fonction de la tension de grille et de la pression.

RACCORD POUR JAUGE JA 10

Un raccord étanche, étudié spécialement, permet de relier la jauge JA 10 aux divers types d'enceinte à vide. La mise en place de ce raccord est d'une exécution facile et très rapide. Ce raccord n'est pas fourni.




JA 10 COURBES du COURANT du COLLECTEUR en FONCTION : de la de la

TENSION GRILLE

de la PRESSION

TENSION DU COLLECTEUR: - 30 Volts COURANT DE GRILLE: 10 mA

Types de sécurité "Cinq étoiles"

7 ET 9 BROCHES A CHAUFFAGE INDIRECT OU A CATHODE FROIDE POUR MATÉRIELS MILITAIRE ET PROFESSIONNEL

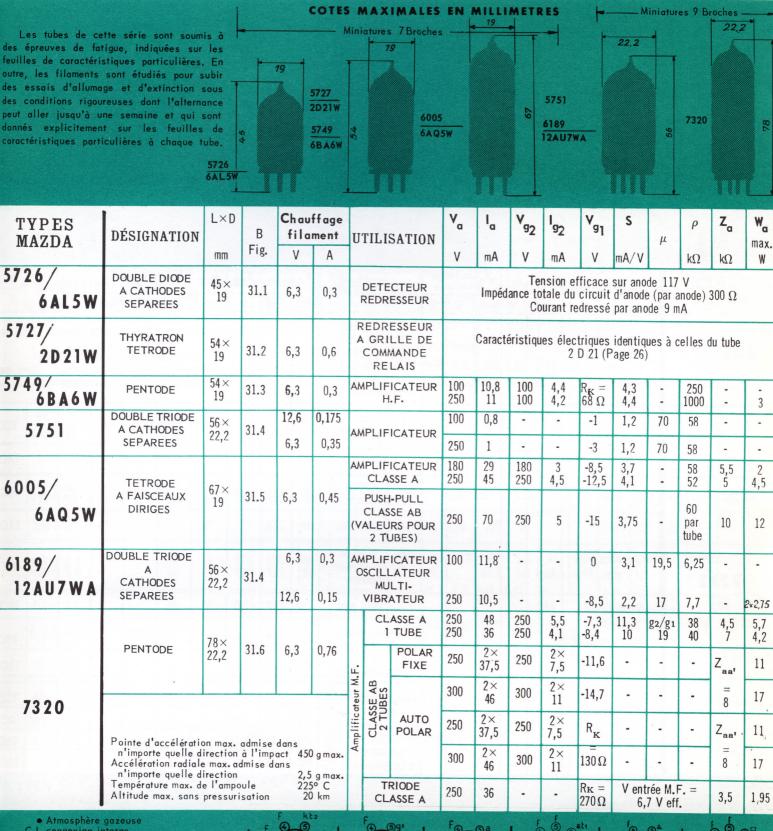
COTES MAXIMALES EN MILLIMETRES Miniatures Les tubes de cette série sont Miniatures 7 Broches_ 9 Broches soumis à des épreuves de fatigue, indiquées sur les feuilles de carac-22.2 téristiques particulières. En outre, les filaments sont étudiés pour subir des essais d'allumage et d'extinction sous des conditions rigou-OA2WA reuses dont l'alternance peut aller OA2WA (6073)jusqu'à une semaine et qui sont 12AT7WA 6AK6S EC1 OB2WA donnés explicitement sur les feuil-(6074)5654/ les de caractéristiques particulières 6AU6WA 12AX75 à chaque tube. 6AK5W (6136)L×D Chauffage TYPES Za ٧a V_{g2} lg2 V_{g1} B **DÉSIGNATION** UTILISATION filament MAZDA mai μ Fig. mA/V A V mm mA V mA ٧ $k\Omega$ kΩ Amorçage: 75mA max. (moyenne pour un temps d'amorçage ne dépassant pas $200 \mu s$) REGULATEUR Intensité en service continu : compris entre 5 et 30 mA DIODE A GAZ 60,3 DF Tension: 330 V max. Courant: 200 μA max. OA2WA-EC1 Electrode de préconisation 30.6 TENSION A A CATHODE 19 FROIDE ELECTRODE DE Tension d'amorçage : 165 V max. (jusqu'à 155 lux) Tension de fonctionnement à 30 m Å : 149 V moyen **PRECONISATION** Plage de régulation : ± 5 V max. (courant compris entre 5 et 30 m/ Amorçage 75mA max. (moyenne pour un temps d'amorçage ne dépassant pas 10 secondes) DIODE A GAZ 67,5 STABILISATEUR OA2WA Intensité en service continu : compris entre 5 et 30 mA A CATHODE X 30.1 DE Tension d'alimentation d'anode : 185 V CC minimum (6073)19 FROIDE TENSION Tension d'amorcage: 155 V CC Tension de fonctionnement : 149 V CC Amorçage 75 mA max. (moyenne pour un temps d'amorçage ne dépassant pas 10 secondes) OB2WA DIODE A GAZ 67,5 STABILISATEUR Intensité en service continu : compris entre 5 et 30 mA 30.1 A CATHODE × DE Tension d'alimentation d'anode : 133 V CC minimum (6074)19 FROIDE **TENSION** Tension d'amorçage: 115 V CC Tension de fonctionnement : 108 V CC 54 **AMPLIFICATEUR** Caractéristiques électriques identiques à celles du tube 6AK6S X PENTODE 30.2 6.3 0.15 B.F. 6 AK 6 (voir page 27) 19 CLASSE A AMPLIFICATEUR R_{K} 150 Ω 2,1 4,3 6AU6WA 100 3,9 5,2 5.0 100 500 PENTODE 30.3 0.3 6.3 A 250 1000 3,5 10.6 150 (6136)PENTE FIXE 68Ω DOUBLE TRIODE 56 6,3 0,3 **AMPLIFICATEUR** 12AT7WA 30.4 250 60 A CATHODES X 10 -2 5.5 10 CASCODE 22.2 12,6 2,! **SEPAREES** 0,15 DOUBLE **AMPLIFICATEUR** 56 12.6 0.15 100 0.5 -1 1,25 100 80 TRIODE A **OSCILLATEUR** 12AX7S X 30.4 **CATHODES** MULTI-22,2 6,3 0,3 250 -2 100 62,5 2× 1,2 1,6 **SEPAREES VIBRATEUR** 45 **AMPLIFICATEUR** RK 5654/ PENTODE X 30.5 0,175 120 120 6,3 H.F. 7,5 2,5 5 340 6AK5W 19 A LARGE BANDE 200Ω azeuse CI-Connexion interne à ne pas utiliser ep. électrode

B 30.4

CONTACTS FACE A L'OBSERVATEUR

B 30.6

de préfonisation


30

B 30.1

B 30.2

Types de sécurité "Cinq étoiles"

7 ET 9 BROCHES A CHAUFFAGE INDIRECT POUR MATÉRIELS MILITAIRE ET PROFESSIONNEL (SUITE)

 Atmosphère gazeuse
 C 1-connexion interne à ne pas utiliser
 PMf point milieu du filament

MAZDA

31.2 | B31.3 | B31.4 | B ONTACTS FACE A L'OBSERVATEUR

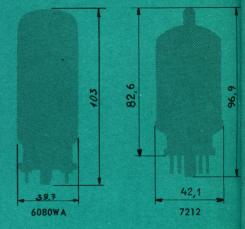
Types de sécurité "Cinq étoiles"

8 BROCHES A CHAUFFAGE INDIRECT POUR MATÉRIELS MILITAIRE ET PROFESSIONNEL (SUITE)

7212

RENSEIGNEMENTS GENERAUX

COTES MAXIMALES EN MILLIMETRES


Grâce à un gain en puissance élevé et à son excellent rendement, le 7212 peut fonctionner avec des tensions d'alimentation d'anode assez faibles, tout en donnant une puissance de sortie importante et en n'exigeant qu'une faible excitation.

Le tube 7212 est un tube d'émission de petite puissance faisant partie de la Série Cinq Etailes donc
particulièrement étudié pour les applications où il
devra résister à des conditions mécaniques très sévères : régime de chocs et de vibrations.

Il peut être utilisé en amplificateur ou oscillateur
haute fréquence, quissi bien qu'en amplificateur ou
modulateur basse fréquence.

De faibles dimensions pour sa puissance, le 7212 est
d'une construction très robuste et comporte un montage sur pied pressé, donc avec des connexions de
sortie courtes. Il dispose d'une triple sortie de
connectée au blindage interne du tube. Cette disposition permet des découplages efficaces en haute fréquence.

Les broches sont montées sur un culot octal à colle-en régime de trafic amateur ou commercial inter-mittent et peut être utilisé à pleine puissance jus-qu'à 60 MHz. Il peut également être utilisé jusqu'à 175 MHz en réduisant la puissance appliquée à l'anode.

TYPES MAZDA	DÉSIGNATION	L×D	В	fi	auffc lame	ige nt	UTILISATION		V _a	l _a	V _{g2}	I _{g 2}	V _{g1}	l _{g1}	Z aa'	₩ent. W	w max.	Régime
MAZDA	acesa ing acesahar	mm	Fig.	Mode	٧	Α		1	V	mΑ	V	mA	V	mΑ	kΩ	VV	W	02
6080WA	DOUBLE TRIODE DE PUISSANCE	103× 39,7	32.1	Ind.	6,3	2,5	REGUL. SERIE DES ALIMENT. STABILISEES TRES FAIBLE COEFFICIENT D'AMPL. $(\mu=2)$	1	135	125		de l'an	Per efficient	nte : 7 d'amp au point	mA/V lificati t le plu	max. on : 2 is chaud	max.	o C ma
						18,	AMPLI. PUIS. M.F. CONNEX. TRIODE		200 400	125 100		-	-50 -100	-	5 8	0 0	10 22	TC(
						84	2 TUBES CLASSE AB1	4	400	100			-100	-	8	0	22	TAC
							AMPLI. PUIS. M.F. 2 TUBES		500 600	215 200	185 180	25 23	-40 -45	-	5.5 7	0	70 82	TCC
7212							CLASSE ABI	7	750	220	195	26	-50	-	8	0	120	TAC
	PENTODE V.H.F. A	96,9 ×	32.2	Ind.	6.3	1,25	AMPLI. PUIS. M.F. MODULATEUR 2 TUBES		500 600	242 247	175 165	18 17	- 4 4 -44	-	4,6 6,8	0,3 0,2	83 90	TCC
(3)	FAISCEAUX DIRIGES	42,1	52.2	mu.	0,5	1,20	CLASSE AB2		700	240	165	20	-46	- "	7,4	0,4	131	TAC
	DIRIGES						AMPLI. PUISS. MODUL. H.F.		475	94	135	6,4	-77	2,8	-	0,3	34	TCC
							CL. C TELEPHONIE		600	112	150	7,8	-87	3,4	-	0,4	52	TAC
					- 5		AMPLI. PUIS.	71112	600	112	150	9	-58	2,8	-	0,2	52	TCC
							H.F. OSCILLA-	00	750	120	160	11	-62	3,1	-	0,2	70	TAC
								ZIJI	320	140	180	10	-51	2		3	25	TCC
		i de		8			CLASSE C TELEPHONIE	0	400	150	190	10,4	-54	2,2	-	2	35	TAC

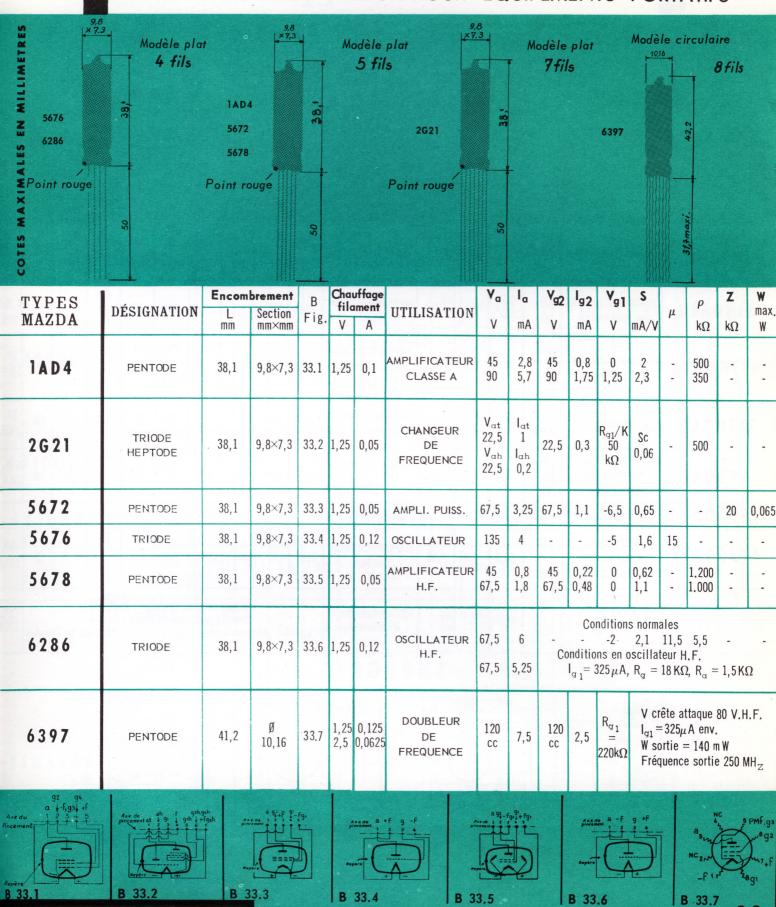
(1)-T.C.C. Trafic commercial continu — T.A.C.I. Trafic amateur ou commercial intermittent
(2)-Le filament du tube 6080WA est étudié pour satisfaire aux essois de : - résistance aux chocs (450g pendant 1milliseconde)
- résistance aux vibrations (2,5g pendant 72h, fréquence 25Hz dans 3 directions orthogonales entr'elles)
- fatigue: une tension de 7.5 V est appliquée au filament pendant 1 min. puis coupée pendant 1 min. Pendant cet essai, la tension entre le filament et la cathode est de 300 V. Le tube doit supporter 2000 allumages et extinctions successifs,ce qui correspond à une durée totale d'essais de 66h 2/3 ou environ 3 jours.

(3)-Le filament du tube 7212 est étudié pour satisfaire à l'épreuve suivante: allumage sous une tension de 7 V pendant 1 min., puis extinction pendant 4 minutes.

Pendant cet essai la tension entre le filament et la cathode est de 100 V. Le tube doit pouvoir supporter 2000 allumages et 2000 extinctions, ce qui correspond à une durée totale d'essai de 167 heures environ ou une semaine.

2000 extinctions, ce qui correspond à une durée totale d'essai de 167 heures environ ou une semaine.

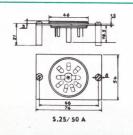
B 32.1

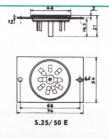

B 32.2

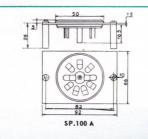
B.M. Baque métallique et culot.

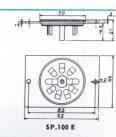
CONTACTS FACE A L'OBSERVATEUR

Types subminiatures


A CHAUFFAGE DIRECT POUR ÉQUIPEMENTS PORTATIFS




FACE A L'OBSERVATEUR


Types d'émission série "A" et supports

PMf - Point milieu du filament NC - Non connecté

B 34.3

B 34.4

B 34.2

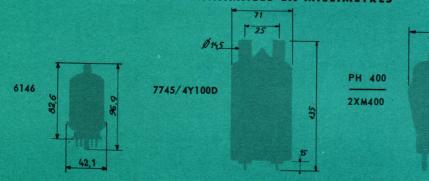
Types d'émission et redresseurs

807 4Y25	4Y10	22	71	SE	4Y50D	STATES EN	MIL	5 600 13 A	0,5	4Y1 1		53 + 121 - 121	720	866A 2XM6		57-22	151
TYPES MAZDA	DÉSIGNATION	L×D	B Fig.	Chauf filan		UTILISATION	V _a	I _a	V _{g2}	l _{g2}	V g1	I ₉₁	S mA/V	₩ _{G1}	W _{ent}	W _a max W	Régime (1)
4 Y 5 O D	DOUBLE TETRODE PUSH-PULL A FAISCEAUX DIRIGES		35.2			AMPLI. M.F. CL. C - TELEGR.		240	200 c.c.	32	-45	12		-	0,7	-	-
		112 × 53		6,3 12,6	3,2 1,6	(Elém. en paral.)	750 c.c.	160	C.C.	30	-55	12	-	•	0,8	90	-
ond 4					7,5	OSCIL, 200 MH $_{ m Z}$ CL, C - TELEGR, PUSH PULL		225	225	25	R _{g1} 12kΩ	10	-		-	-	•
4 Y 1 O O A 1 N	TETRODE FAISC. DIRIGES	120 × 53	35.4	6,3	3,75	AMPLI. M.F.	750 max.		325 max.	-	-	W	_{g2} = 1(0 W ma	IX.	50 max.	•
4 Y 100 R	DOUBLE TETR. FAISC. DIRIGES	135 × 71	35.5	12,6	3,5	REGUL. SERIE ALIM. STABILIS.		Résist, interne 220 Ω - Pente 54 mA/V - Coeff, d'amp Dissipation anode : 100 W max, - Dissip, grille n° 2 : 10 W) .12 V max.	
807 4 Y 2 5	TETRODE FAISC. DIRIGES	146 × 50	35.1	6,3	0,9	AMPLIF. H.F. CLASSE C	600	100	250	7	-45	3,5	-	0,2	25	40	-
832-A	DOUBLE TETRODE PUSH-PULL A FAISCEAUX DIRIGES	81 × 60,5	35.2	12,6	0,8	AMPLI.	600 600	36 60	200 200	16 20	-65 -70	2,6 3,0	-	-	0,18 0,21	17 26	TCC TACI
				6,3	1,6	PUISSANCE CLASSE C	750 750	48 65	200 200	15 22	-65 -50	2,8 4,0			0, 19	26	TCC TACI
866A 2XM600A	VALVE MONOPLAQUE A VAPEUR DE MERCURE	151 × 51	35.3	^{**} 2,5	5	REDRESSEUR (position verticale, culot en bas)	Te Te Co Co	Fréquence d'alimentation 150 150 1,000 HZ Température du mercure condensé 25-60 25-70 25-70 °C Tension inverse de crête 10,000 2,000 5,000 V ma Courant anode de pointe 1 2 1 A ma Courant anode moyen 0,25 0,50 0,25 A ma Chute de tension interne 15 15 15 V ap								ax.	
• Atmosphè			1	6	g) g1	1 kg3 16roc	he \$321	NC	ergot	NC		- (A)K				ζ.	

Atmosphère gazeuse
 PMf-point milieu du filament

(1) - TCC - Trafic commercial continu TACI - Trafic amateur ou commercial intermittent

grand grand


B 35.1

CONTACTS FACE A L'OBSERVATEUR

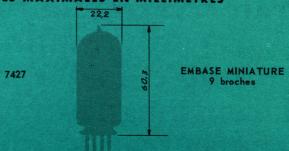
Types d'émission et redresseurs

(SUITE)

COTES MAXIMALES EN MILLIMETRES

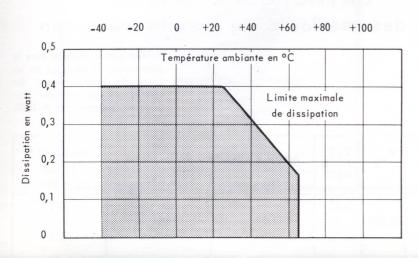
TYPES MAZDA	DÉSIGNATION	L × D	B Fig.	Chau fila	ffage ment		UTILIS	ATI	ON	V _a	I _a	V _{g2}	I _{g2}	V _{g1}	I _{g1}	100	W _{G1}	9.77	max.	Régime (1)
				V	. A		CON TRIODI M.F 2 CL.	E PU	ISS. BES	400 400	100 100	- -	- -	-100 -100	mA	$Z_{\alpha\alpha^{i}} = Z_{\alpha\alpha^{i}} = Z_{\alpha\alpha^{i}}$	8 ΚΩ	W	22 22	TCC TACI
						ATEUR		S. M. JBES ABI	5	600 750	200 220	180 195	23 26	-45 -50		Z _{aa} , = Z _{aa} , =		PΩ	82 120	TCC TAC
6146	PENTODE V.H.F. A FAISCEAUX DIRIGES	96,9 × 42,1	36.1	6,3	1,25	AMPLIFICATEUR			UR	600 750	207 240	165 165	17 20	-44 -46		Z _{aa'} =			90 131	TCC
	DINIGES						PUISS MODUL TELEF	. CL	. C.	475 600	94 112	135 150	6,4 7,8	-77 -87	2,8 3,4	-		0,3 0,4	34 52	TCC
							AMPL. PUISS . H.F.	jusqu'à	60 MHz	600 750	112 120	150 160	9 11	-58 -62	2,8 3,1	-		0,2 0,2	52 70	TCC TAC
							SCILL. CL. C PHONIE	osni	175 MHz	320 400	140 150	180 190	10 10,4	-51 -54	2,2			3 2	25 35	TCC
7745	DOUBLE TETRODE	135 ×	36.3	12.0	2.0	I. H.F.		. C. EGR arall		600 600 750	250 340 390	250 300 300	60 72 70	-85 -100 -100	11 8 13			1 0,9 1,4	120	
4Y100D	PUSH-PULL A FAISCEAUX DIRIGES	71	30.3	12,6	3,6	AMPLI.		. C. EGR		550 600	-	R_{g_2} 5 K Ω		-90 -100	11 9	I _K	290 300	1,1	-	*
PH400 2XM400	VALVE MONOPLAQUE A VAPEUR DE MERCURE (Culot à broches fendues)	125 × 51	36.2	4	2,35	(F	REDRE position v	vertic	ale,			Te	empérat Tensic Coura Cou	cure du on inve ant ano urant ar	mercu rse de de de node n	tation re cond crête pointe noyen : nterne	ensé : 4.000 : 1,6 A 0,4 A	25-70° V max max. max.	°C <.	

Atmosphère gazeuse
BM-bague métallique
du culot



(1) - TCC - Trafic commercial continu. TACI - Trafic amateur ou commercial intermittent

B 36.2


B 36.3

Cellule photorésistante au sulfure de carbone 7427

Le 7427 peut être utilisé pour la commande automatique de l'éclairage d'une rue, d'un local ou pour les diverses applications de l'électronique industrielle comportant un dispositif à commande lumineuse.

	Longueur d'onde au maximum de réponse spectrale
5cm ² env. 350 V max.	Surface sensible Tension appliquée (valeur continue ou de crête)
voir courbe ci-dessous	Puissance dissipée (surface sensible uni formément éclairée)
20 mA max.	Courant (surface sensible uniformément éclairée)
-40 °C < T _A < + 65°C	Température ambiante
	Courant à 25°C avec une tension continue de polarisation de 50 V et un éclairement de 10,76 lux émis par une source à filament de wolfram fonctionnant à une température de couleur de 2854°K
idente 40 μ A max.	Courant dans l'obscurité, 10 secondes après extinction de la source précédente
à + 65°C à la	Variation de la résistance avec la température : dans les conditions indiquées ci-dessus, le rapport de la résistance à + 65°C à la
	résistance à -40°C est de

extrémité 2

ne doivent pas être utilisées comme points de relais dans le câblage des circuits.

Direction de la lumière (à 60° de l'axe des broches

nº 2 et 7).

Cathoscope blindé pour télévision

permettant la suppression de la glace avant du téléviseur

verre teinté écran rectangulaire à coins carrés aluminisé angle de déviation: 110° déviation magnétique sans piège à ions concentration électrostatique

DIAGONALE: 60 cm

NOUVEAUTE

IMPORTANT Pour éviter de brûler l'écran, il est instamment recommandé de prévoir un dispositif d'effacement ou de déviation du spot agissant dès la mise hors circuit du récepteur où à la remise en route à chaud.

Blindé

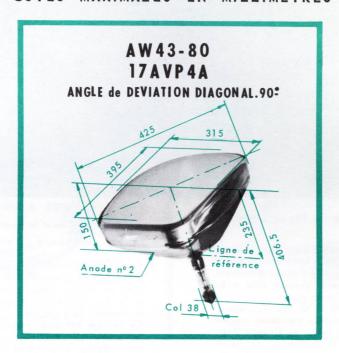
permettant la suppression de la glace avant du téléviseur

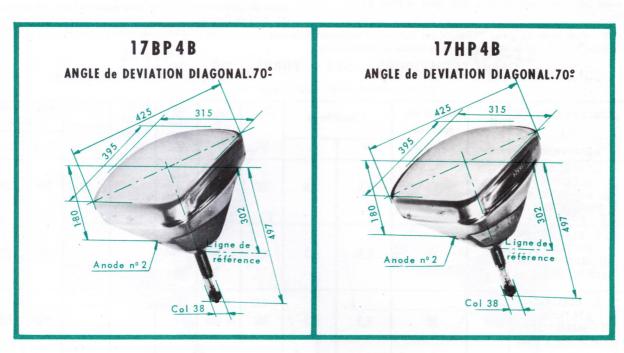
Verre teinté

Grande simplicité de montage

3 nouveaux avantages

alliés à la finesse du spot et à la luminosité font de ce nouveau CATHOSCOPE MAZDA un des meilleurs du marché européen


Précautions à prendre dans le maniement, le montage ou au CARACTÉRISTIQUES cours du fonctionnement des cathoscopes en général. Voir page 40, paragraphes A-C-D.


В	Poids du tube nu	Chau	ffage	٧٩١	v _{a2}	Vg1 extinct.	Angle d'ouverture du faisceau		Dimensions de l'image
Fig.	en kg	V	А	٧	٧	image V	Diag.	Horiz.	en mm
38.1	13	6,3	0,3	400	16.000	- 42 à - 78	110°	990	489 × 385

Cathoscopes de télévision à écran métallisé (suite) DIAGONALE: 43 cm.

ENCOMBREMENTS COTES MAXIMALES EN MILLIMETRES

Observation: Le contact de masse situé sur la portion graphitée extérieure du cathoscope et en principe près de sa limite la plus proche du culot, doit être inclus dans une surface de 50 × 50 mm. Cette surface se trouve sur l'une des grandes faces de l'ampoule, à 90° de la prise d'anode en tournant dans le sens inverse des aiguilles d'une montre, le culot étant tourné vers l'observateur.

Cathoscopes de télévision à écran métallisé

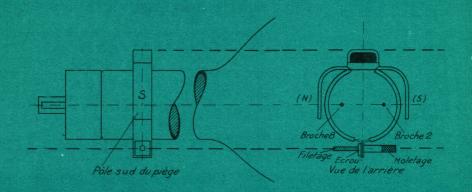
DIAGONALE: 54 cm.

PRECAUTIONS A PRENDRE ET REGLAGE DU PIEGE A IONS

PRECAUTIONS A PRENDRE

DANS LE MANIEMENT,

LE MONTAGE


OU

AU COURS DU FONCTIONNEMENT

DES CATHOSCOPES

EN GENERAL

Voir page 40.

MISE EN PLACE ET REGLAGE DU PIEGE A IONS

REMARQUE IMPORTANTE - Un piège à ions mal réglé sur un canon sous tension risque de projeter la totalité du faisceau électronique sur un point limité, de la paroi d'anode, entraînant pour celle-ci une dissipation excessive pouvant aller à la longue, (quelques minutes) jusqu'à la perforation.

Il est donc indispensable que, durant le réglage du piège à ions, l'opérateur ne soit troublé par aucune inquiétude concernant le comportement électrique du reste de l'appareillage lequel doit par conséquent avoir été soigneusement vérifié et essayé avant la mise sous tension des deux anodes du cathoscope.

PIEGE A AIMANT PERMANENT

Placer le piège sur le col du tube

conformément aux vues de la figure ci-dessus

Régler en définitive le piège ainsi monté:

 ${f a}$ - en faisant glisser l'ensemble lentement sur le col du tube sans en changer l'orientation.

b - le cas échéant en tournant légèrement l'ensemble en le maintenant dans son plan.

Le réglage est obtenu lorsque l'on observe un maximum de brillance de l'image.

Un déréglage du piège se manifeste, s'il est faible par une perte de brillance et s'il est plus important par une ombre sur un bord de l'image

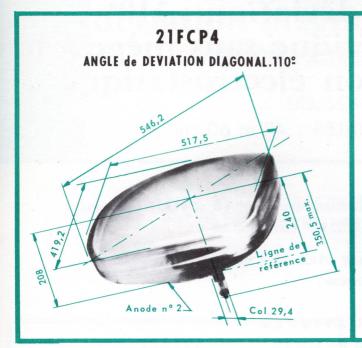
IMPORTANT - Pour éviter de brûler l'écran, il est instamment recommandé de prévoir un dispositif d'effacement ou de déviation du spot agissant dès la mise hors circuit du récepteur ou à la remise en route à chaud.

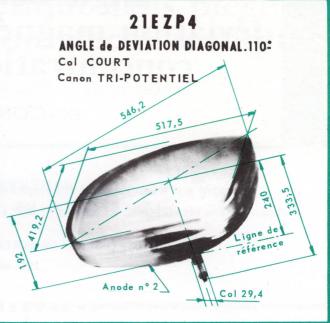
CARACTERISTIQUES DES TUBES DE 54 cm

(Encombrements voir page 43)

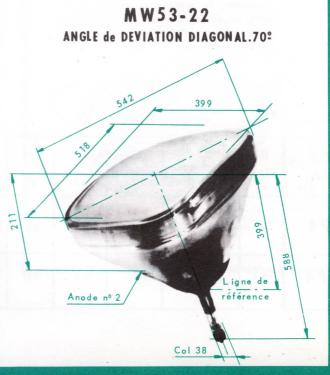
TYPES	CONCENTRATION:C	B Fig.	Poids du tube nu	Chau	ffage	ν _α 1	V _a 2	Vg1 extinc, image	Bobine concen- tration	Champ. Piège	Angle faisc		Dim. image
MAZDA	DEVIATION:D	rig.	en kg	V	Α	٧	V	V	A/t	Gauss	Diag.	Horiz.	mm
21ATP4	C:ELECTRO STATIQUE D:MAGNETIQUE PIEGE A IONS	42.1	9,9	6,3	0,6	300	16.000	-28 à -72		33	90°	85°	484 × 382
21EZP4 Col court Canon TRI-POTENTIEL	C:ELECTRO STATIQUE D:MAGNETIQUE SANS PIEGE A IONS	42.2	10	6,3	0,3	400	16.000	-34 à -56			110°	105°	484 × 386
21FCP4	C:ELECTRO STATIQUE D:MAGNETIQUE SANS PIEGEA IONS	42.4	10	6,3	0,3	300	16.000	-34 à -63		-	110°	105°	484 × 383
MW53-22	C ET D MAGNETIQUES PIEGE A IONS	42.3	11,1	6,3	0,3	300	16.000	-33 à -77	710	40	70°	65°	486 × 365

Fluorescence: blanche Phosphorescence: blanche Persistance: brève


Chauffage indirect,
C.I. Connexion interne,
Rge. Recouvrement graphité
extérieur,


B 42.2 | B 42.3

4 2


Cathoscopes de télévision à écran métallisé (SUITE) DIAGONALE : 54 cm.

ENCOMBREMENTS COTES MAXIMALES EN MILLIMETRES

Observation concernant le contact de masse: voir page 41.

Cathoscopes de télévision à écran rectangulaire à coins carrés aluminisé angle de déviation : 110° déviation magnétique sans piège à ions concentration électrostatique

DIAGONALES: 48 et 60 cm

Par rapport aux cathoscopes 110° dits simplement rectangulaires (17 HP 4 B et 21 ATP 4 par exemple) et pour le même encombrement, les modèles 19 BEP 4 et 23 AXP 4 présentent une

AUGMENTATION DE LA SURFACE UTILE DE L'ECRAN DE 10% MINIMUM

CARACTERISTIQUES

(Encombrements voir page 45)

IMPORTANT

Pour éviter de brûler l'écran, il est instamment recommandé de prévoir un dispositif d'effacement ou de déviation du spot agissant dès la mise hors circuit du récepteur où à la remise en route à chaud.

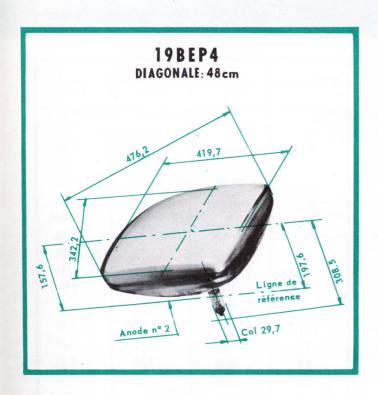
Précautions à prendre dans le maniement, le montage ou au cours du fonctionnement des cathoscopes en général. (Voir page 40).

TYPES MAZDA	B Fig.	Poids du tube nu	Chau	ffage	Y _a 1	V _{a2}	Vgl extinct, image	Angle d'ouvertu	re du faisceau	Dimensions de l'image
MAZDA	1 18.	en kg	٧	Α	V	٧	V	Diag.	Horiz.	en mm
19BEP4	44.1	6,5	6,3	0,3	400	16.000	- 42 à - 78	110°	990	384 × 305
23AXP4	44.1	12	6,3	0,3	400	16.000	- 42 à - 78	110°	990	489 × 385

Fluorescence : blanche Phosphorescence : blanche Persistance : brève

Au la de

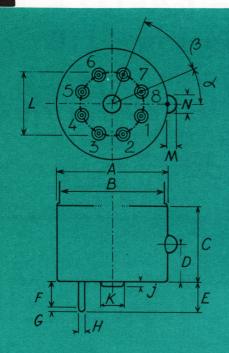
Augmentation de la surface utile de l'écran

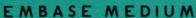

3AXP4

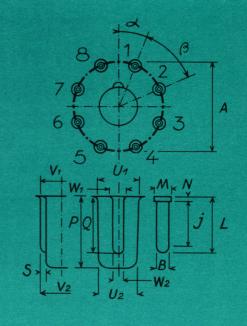


Chauffage indirect Rge - Recouvrement graphité extérieur Cathoscopes de télévision à écran rectangulaire à coins carrés aluminisé angle de déviation : 110° déviation magnétique sans piège à ions concentration électrostatique

DIAGONALES: 48 et 60 cm

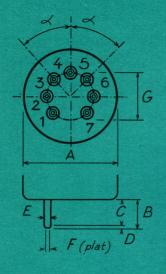

ENCOMBREMENTS COTES MAXIMALES EN MILLIMETRES

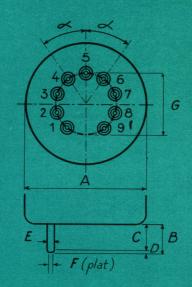


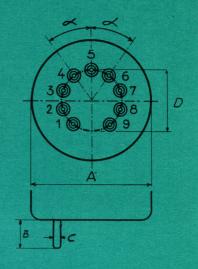


Observation: Le contact de masse situé sur la portion graphitée extérieure du cathoscope et en principe près de sa limite la plus proche du culot, doit être inclus dans une surface de 50×50 mm. Cette surface se trouve sur l'une des grandes faces de l'ampoule, à 90° de la prise d'anode en tournant dans le sens inversedes aiguilles d'une montre, le culot étant tourné vers l'observateur.

Embase Medium et culot octal Tolérances




CULOT OCTAL


Dete		Cotes en mm	. ,
Références	Min.	Nom.	Max.
А	21,6	22,0	22,0
В	-	20,5	-
C	11	15	-
D	5,40	5,75	5,85
E	-	6	7,1
F	4,5		- Y
G	0,38	-	4 - Ya
Н	0,97	1,02	1,07
J	-		1,15
K	-		7,1
L		11,5	
М	1,20	1,35	1,6
N	3,3	3,5	3,5
α) en	21°30'	22°30'	23°30'
B degrés	-	450	

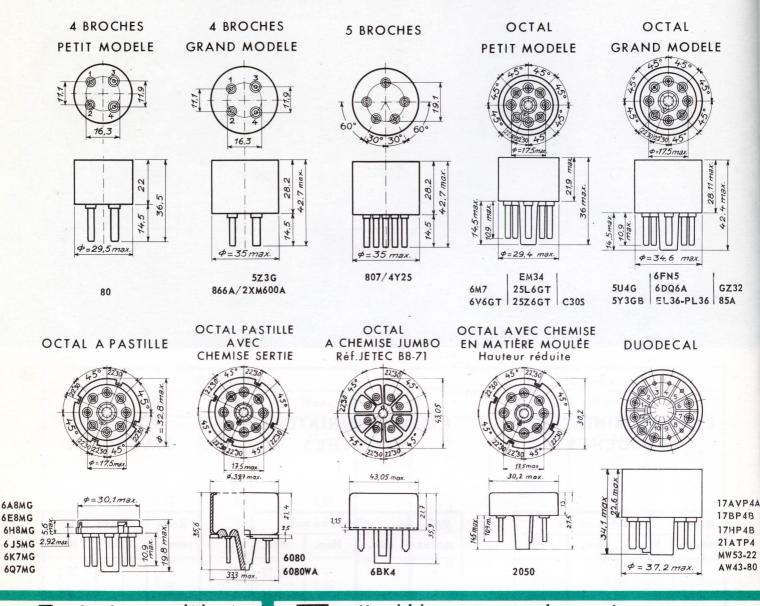
Dette	Cotes en mm									
Références	Min.	Nom.	Max.							
Α		17,45								
В	2,29	2,36	2,43							
j	8,6	-	-							
L	10,85	11,10	11,35							
M	-	-	3,43							
N	-		1,27							
Р	13,97	14,23	14,48							
Q	12,45	12,70	12,95							
S	1,02	1,20	1,39							
Uı	7,75	7,93	8,05							
U ₂	7,62	7,82	8,00							
V ₁	8,94	9,20	9,45							
V ₂	8,72	8,97	9,22							
W ₁	2,16	2,29	2,41							
W_2	1,91	2,03	2,16							
α) en	-	22°30'	-							
B degrés	-	45°								

Embases miniatures et Magnoval Tolérances

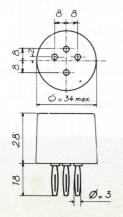
EMBASE MINIATURE
7 BROCHES

9 BROCHES

EMBASE MAGNOVAL

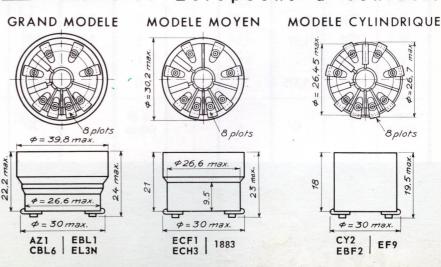

Réfé-	Cotes en mm								
rences	Min.	Nom.	Max.						
Α		2	19,05						
В			7,14						
С	4,75	0 .00	a h.g.						
D	0,38	0.0	0,89						
E	0,97	1,02	1,07						
F			0,5						
G		9,525	-						
α en degrés		45°							

Réfé-	C	otes en n	nm
rences	Min.	Nom.	Max.
Α	3.74		22,22
В			7,14
С	4,75	1	-
D	0,38	01/1.20	0,89
Е	0,97	1,02	1,07
F		-	0,5
G	-	11,887	
α en degrés		36°	


Réfé-	Cotes	en mm
rences	Nom.	Max.
Α		30,2
В		8,7
С	1,27	A
D	17,45	•
α en degrés	360	

Culots - Cotes et utilisations

I - Modèles Américains à broches



II - Ancien modèle à broches fendues

PH400/2XM400

III Modèles Européens à contacts

Répertoire général des tubes et cathoscopes

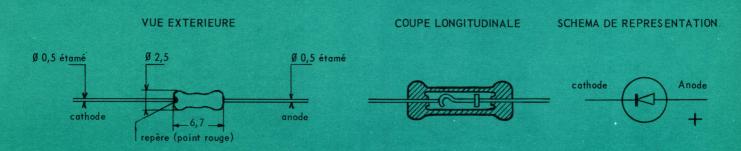
TYPES	PAGES	AUTRES APPELLATIONS	TYPES	PAGES	AUTRES APPELLATIONS	TYPES	PAGES	AUTRES APPELLATION
)A2	26		6AQ5	13	EL90	12AT7	18	ECC81
DA2WA-EC1	30		6AQ5W	31	6005	12AT7WA	30	LUCUI
A2WA	30	6073	6AU6	13	EF94	12AU6	14	
B2	26	11/9	6AU6WA	30	6136	12AU7A	18	ECC82
B2WA	30	6074	6AV6	13	EBC91	12AU7WA	31	6189
A3	26		6BA6	13	EF93	12AV6	14	0103
AC6	11	DK92	6BA6W	31	5749	12AX7A	18	ECC83
AD4	33		6BE6N	14		12AX7S	30	20000
AE4	26		6BK4	27		12BA6	15	
L4	11	DF92	6BM5	14	6P9	12BE6N	15	
lM3	7	DM70	6BQ5	21	EL84	15A6	24	PL83
.R5	11	DK91	6BQ7A	17		16A5	24	PL82
.\$5	11	DAF91	6BX4	14	6X4	17AVP4-A	40	. 202
T4	11	DF91	6BX6	20	EF80	17BP4-B	40	
D21	26		6BY7	20	EF85	17HP4-B	40	
2D21W	31	57 27	6CA4	23	EZ81	17Z3F	24	PY81F
2G21	33		6CB6	14		19BEP4	44	1 1011
2XM400	36	PH400	6CF8	21	EF86	19D3	25	UCH81
2XM600A	35	866A	6CK6	21	EL83	19Y3	24	PY82
A4	26	DL93	6DC8	19	EBF89	21ATP4	42	1 102
B4	27		6DQ6A	4		21B6	18	
Q4	11	DL95	6DR6	17		21EZP4	42	
354	11	DL92	6E8MG	3		21FCP4	42	
T50A1G	34		6FN5	4	EL300	23AXP4	44	
T100A1G	34		6H8MG	3		25L6G	3	
3T100A2	34		6J5MG	3		25Z6G	3	
Y25	35	807	6K7G	3		35FN5	4	PL300
Y50A1	34		6K7MG	3		35W4	15	. 2000
Y50A2	34		6L6GC	3		50B5	15	
Y50D	35		6L6GT	3		80	3	
Y100A1N	35		6M7MG	3		117Z3N	11	
Y100A1S	34	1,100	6N3	22	EY82	807	35	4Y25
Y100D	36	7.745	6N8	18	EBF80	832-A	35	
Y100R	35		6P9	14	6BM5	866-A	35	2XM600A
A6	27		6Q7GT	3		1883	6	
U4G	3		6Q7MG	3		2050F	27	
Y3GB	3		6U8	17	ECF82	5654	30	6AK5W
Z3	3		6V3F	22	EY81F	5672	33	
AB8	20	ECL80	6 V 4	22	EZ80	5676	33	
8LA3	20	ECH81	6V6G	3		5678	33	
AK5	27		6X2	6	EY51	5726	31	6AL5W
SAK5W	30	5654	6X4	14	6BX4	5727	31	2D21W
SAK6	27		6X4W-S	30		5749	31	6BA6W
AK6S	30		8SA-1	39		5751	31	
AK8	18	EABC80	8SA-5	39		5763	27	
SAL5	13	EB91	12AJ8	17		6005	31	6AQ5W
AL5W	31	57 26				N - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		

Répertoire général des tubes et cathoscopes (SUITE)

	1	T						
TYPES	PAGES	AUTRES APPELLATIONS	TYPES	PAGES	AUTRES APPELLATIONS	TYPES	PAGES	AUTRES APPELLATION
6073 6074 6080 6080WA 6136 6146	30 30 27 32 30 36	0A2WA 0B2WA 6AU6WA	ECC82 ECC83 ECC84 ECC85 ECC189 ECF1	18 18 19 19 19	12AU7A 12A X7A	EY51 EY81F EY82 EY86 EY88 EZ80	6 22 22 22 22 22 22	6X2 6V3F 6N3
6189 6196 6250 6286 6336A 6397 7212	31 28 28 33 27 33 32 31	12AU7WA	ECF80 ECF82 ECF86 ECF802 ECF806 ECH3 ECH42 ECH81	19 17 19 19 19 5 8 20	6U8 6AJ8	EZ81 E5 GZ32 GZ34 GZ41 JA10 Jauge Afnor K25.000A1	23 28 6 6 9 29 29	6CA4
7427 7745 AW43-80 AZ1 AZ41 C30S-V1 CBL6	37 36 40 5 8 39 5	4Y100D	ECH83 ECL80 ECL82 ECL85 ECL86 EF9 EF40	16 20 20 20 20 20 6 8	6AB8	MW53-22 PC86 PC88 PCC84 PCC189 PCF80 PCF86	42 23 23 23 23 23 23 23	
CY2 DAF91 DAF96 DF91 DF92 DF96 DK91 DK92	5 11 12 11 11 12 11 11	1S5 1T4 1L4 1R5	EF41 EF42 EF80 EF85 EF86 EF89 EF93 EF94	9 9 20 20 21 21 13	6BX6 6BY7 6CF8	PCF802 PCF806 PCL82 PCL85 PCL86 PH400 PL36	23 23 23 24 24 36 6	2XM400 16A5
DK96 DL92 DL93 DL95 DL96	11 12 11 26 11 12 7	1AC6 3S4 3A4 3Q4 1M3	E F 94 E F 97 E F 98 E F 183 E F 184 E F 816 E L 3N	13 16 16 21 21 21 21 6	6AU6	PL82 PL83 PL136 PL300 PL500 PY81F PY82	24 24 4 4 24 24	15A6 35FN5 17Z3F 19Y3
DY86 EABC80 EAF42 EB91 EBC41 EBC81 EBC91	18 18 8 13 8 18 13	6AK8 6AL5 6AV6	EL36 EL41 EL42 EL83 EL84 EL84F EL86	6 9 9 21 21 21 21 22	6CK6 6BQ5	PY88 UAF42 UBC41 UBC81 UBF89 UCH42 UCH81	24 10 10 25 25 10 25	19D3
EBF2 EBF80 EBF83 EBF89 EBL1 EC86	5 18 16 19 5 19	6N8 6DC8	EL90 EL183 EL300 EL500 EL502 EM34	13 22 4 4 4 7	6AQ5 6FN5	UCL82 UF41 UF89 UL41 UL84 UY41	25 10 25 10 25 10 25	1903
EC88 ECC81	19 18	12AT7	EM81 EM84	7 7		UY42 UY85 UY92	10 25 15	

II

Cristons (semi-conducteurs)


Diodes au germanium
Diodes au silicium
Diodes ZENER au silicium
Transistors PNP au germanium

Fabrication C. F. T. H.

Cristons (semi-conducteurs) Diodes au germanium (C.F.T.H.)

CARACTERISTIQUES MECANIQUES

CARACTERISTIQUES ELECTRIQUES

Les diodes au germanium C.F.T.H. sont réalisées selon un mode de fabrication assurant une qualité inégalable, tant pour la stabilité électrique que pour la robustesse mécanique et la facilité d'emploi.

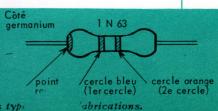
La stabilité électrique est assurée par la soudure directe de la pointe en platine sur la pastille en germanium. Les chocs et les vibrations ne détériorent pas la qualité du contact.

L'enveloppe est en matière vitrifiée constituant une protection efficace contre l'humidité et les moisissures. Les connexions de sortie sont constituées par des fils souples étamés.

Température ambiante: $-50 \text{ à} + 75^{\circ} \text{ C}$ - Conditions maximales à $+25^{\circ} \text{ C}$.

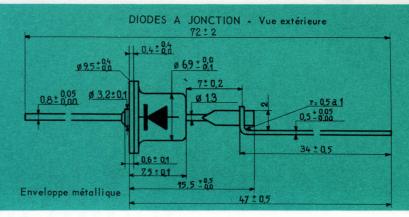
AVANTAGES

- Contact soudé résistant aux chocs et vibrations
- Enveloppe étanche et isolante
- Grande résistance aux agents tropicaux
- Très faible encombrement
- Durée pratiquement illimitée


UTILISATIONS

- Circuits limiteurs
- Circuits de restitution
- Comparateurs de phase
- Antiparasites
- Polarisation V.C.A.
- Discriminateurs
- Mélangeurs
- Séparation de

signaux de synchronisation


	CA	RACTERIS	STIQUES G	ENERALE	S	
i series e e	1 N 48	1 N 63	1 N 64	1 N 65	40 P 1	46 P 1 (1)
V inverse de crête (V) V inv. en continu (V) I redressé moyen (mA) I redres. de pointe(mA) I inst. (1" max.) (mA) I inv. max. (mA) à \ 50 V R inv. max. (KΩ) à -50 V I dir. min. (mA) à + 1 V R dir. max. (Ω) à + 1 V Capacité paral.moy. (μF)	85 70 50 150 400 0,833 - 60 4 250 0,8	125 100 50 150 400 0,05 - 1.000 4 250 0,8	20 - - - 0,025 à - 1,3 V 0,05 à + 0,25 V 0,8	85 70 50 150 400 0,20 - 250 2,5 400 0,8	0,25	> 0,025 2,75 max.
Code couleurs (pt rouge = (K)	jaune-gris	bleu-orange	bleu jaune	bleu - vert	point blanc	jaune - bleu
Fonction	Détection F.M. AntiparasiteT.V. Comparateur de phases	Usages généraux	Dátection vidéo- íréquence	Usages généraux	Détection radio et VCA (avec polarisation)	Détection radio et VCA (montage classique)
(1) 46 P 1 - Mesurée uniquer	nent en efficacité	de détection	haut niveau 1 V bas niveau 30 r	sur charge 50 nV sur charge	ΚΩ ΚΩ	1

Marquage - Le point de couleur rouge indique la polarité de la diode. Le sens passant est celui allant de l'extrémité non marquée, à l'extrémité où se trouve le point rouge (côté germanium). Les cercles de couleur indiqués dans le code ci-dessus sont présentés sur les diodes comme figuré ci-contre. (ex. 1 N 63)

Cristons (semi-conducteurs) Diodes au silicium (C. F. T. H.)

DIODES A POINTE CARACTERISTIQUES ENVELOPPE VERRE SUBMINIATURE Vue extérieure 28 ± 0.5 28 ± 0,5 62,6 ± 1,2

A-DIODES A POINTE AU SILICIUM - ENVELOPPE VERRE SUBMINIATURE

Ces diodes sont remarquables par leur faible encombrement et leur possibilité de fonctionnement à des températures comprises entre -20°C et +100°C.

Elles conviennent particulièrement dans certains circuits de télévision, antiparasites, séparation de tops, etc...

	44 P 2	45 P 2	46 P 2	47 P 2	48 P 2	Unités
Tension de claquage	185	125	70	40	15	٧
Tension inverse maximum de crête	150	100	50	30	10	Ÿ
Courant inverse maximum à 25°C	1	1	1	1	1	μA
Courant inverse maximum à 100°C	200	100	100	100	100	иA
Chute de tension dir. max. pour un cour. de 1 mA	1	1	1	1	1	V
Courant moyen redressé max.	20	20	20	20	20	m A
Courant de crête max.	60	60	60	60	60	mΑ
Capacité pour une tension inverse de - 2 V	0,4	0,4	0,4	0,4	0,4	pF

Remarque: Les valeurs ci-dessus sont destinées à guider l'utilisateur, Elles ne doivent pas être prises comme tolérances de réception. Correction en fonction de la température - Au-dessus de 25°C, il est nécessaire de diminuer le courant moyen et le courant de crête de 0,5% par °C (ex. pour 100° de variation, le courant moyen est diminué de 50%).

B-DIODES A JONCTION AU SILICIUM - ENVELOPPE METALLIQUE 1 - 42J2 pour montages redresseurs basse-tension

Les principaux avantages sont les suivants :

a - Encombrement très réduit

c - Utilisation à haute température (100°C)

e - Coefficient de redressement très élevé

- 50 + 100°C

- 50 + 120°C

b - Redressement de forts courants (500 mA) d - Très faibles courants inverses Caractéristiques moyennes - Charges inductives ou résistives f = 50 Hz Caractéristiques directes :

Caractéristiques inverses : 500 mA 50 V Valeur maximum du courant moyen redressé : - à 25°C Tension inverse de crête maximum Tension inverse continue admissible 50 V - à 100°C 300 mA Courant de surcharge accidentel max. (durée d'applica-Valeur max. de la tension efficace admissible 35 V tion 10 ms) 5 A Valeur max. de la chute de tension moy. correspondant Valeur maximum du courant inverse moyen pour un redressement de 1 alternance à 100°C $300 \mu A$ au courant direct moy, max, pour un redressement de 1 alternance à 100°C 0,5 V 50 kHz Fréquence limite d'utilisation

Température de fonctionnement

Température de stockage

Remarque : Les valeurs des tableaux ci-dessus sont destinées à guider l'utilisateur, mais ne doivent pas être comprises comme tolérances de réception. Nota: Suivant les montages utilisés, prendre les me-

1º - limiter le courant de surcharge dans les montages à capacité en tête. sures nécessaires pour : 2º - se protéger contre les surtensions éventuelles.

> 2 - 40J2 pour alimentation de téléviseur 41J2 (montage doubleur)

Important - ne pas plier la connexion côté cathode à moins de 5 mm du boîtier.

Ce modèle est particulièrement recommandé dans les montages redresseurs doubleurs de tension (type LATOUR et SCHENKEL). Les principaux avantages sont les suivants :

a - Dimensions réduites

sur charge résistive

b - tenue en température

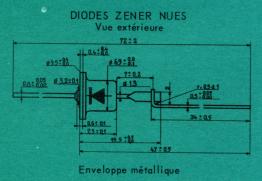
c - aucune usure dans le temps (pas d'émission par cathode)

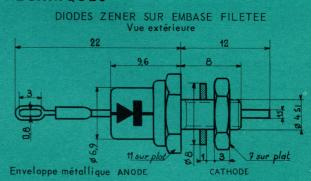
- d aucune puissance de chauffage à demander au transformateur
- e robustesse (excellente tenue aux surcharges élevées)
- f faible chute de tension directe

Caractéristiques moyennes	40J2	41J2
Tension inverse continue de crête admissible à 55° C	380	320 V
Courant redressé moyen maximum à 55°C	420	420 mA
Courant crête maximum supporté par chaque diode ou fonctionnement normal	2	2 A
Courant de surcharge accidentelle maximum à la mise sous tension	8	8 A
Durée de surcharge à la mise sous tension	200	200 ms
Fréquence de fonctionnement	50	50 Hz

Marquage et code de couleurs pour diodes à pointes

Le corps de la diode est peint en noir. La connexion peinte en noir indique la polarité de la diode; le sens passant étant celui allant de l'extrémité non marquée à l'extrémité où se trouve la connexion peinte (côté de la bague la plus large). Cathode = connexion peinte, Anode = connexion non peinte SENS PASSANT


Diodes à jonction au silicium


Type de diode	ler cercle	2 ^e cercle
44 P 2	jaune	jaune
45 P 2	jaune	vert
46 P 2	juune	bleu
47 P 2	aune	violet
48 P 2	igune	gris

Sens du branchement : cathode du côté de la collerette, la flèche peinte sur le corps de la diode $\, 5 \, \, 3 \,$ indique toujours le sens direct de passage du courant.

Cristons (semi-conducteurs) Diodes ZENER au silicium (C.F.T.H.)

CARACTERISTIQUES MECANIQUES

A - DIODES ZENER AU SILICIUM, NUES, POUR REGULATION

Cette série de diodes à jonction au silicium nues, permet d'obtenir dans la région de l'effet Zener, des références de tension dans les conditions sévères de température. Elles se distinguent des tubes à gaz par la possibilité de réguler des tensions beaucoup plus faibles; de plus, l'amorçage se produit à la tension régulée. Leur emploi est particulièrement indiqué dans les montages à transistors, où, par suite des faibles tensions mises en jeu, l'utilisation des régulateurs à gaz est rendue impossible.

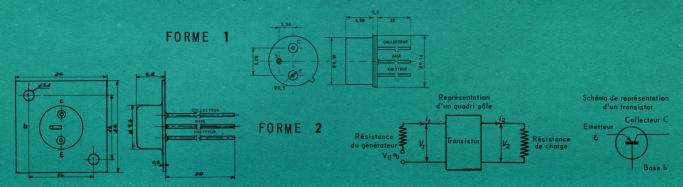
Elles sont prévues pour des utilisations standard de 6,9 et 12 volts.

Caractéristiques moyennes à 25°C	406 Z 4	409 Z 4	412 Z 4	Unités
Tension de référence, pour un courant de 10mA comprise entre	4/7	7/10	10/13	V
Courant de Zener max. Température ambiante de 25° C 100° C	90 55	60 35	50 30	mA mA
Surcharge instantanée pendant 0,01 seconde	900	600	500	mA

B - DIODES ZENER AU SILICIUM, SUR EMBASE FILETEE, POUR REGULATION

Cette série de diodes à jonction au silicium, sur embase filetée, permet d'obtenir dans la région de l'effet Zener, des références de tension dans des conditions sévères de température. Elles sont caractérisées par une faible résistance dynamique inverse, des courants de Zener éleves, et peuvent dissiper des puissances importantes.

Elles trouvent leur utilisation dans les systèmes d'alimentation de récepteurs à transistors.


Caractéristiques moyennes à 25°C	456 Z 4	459 Z 4	462 Z 4	Unités
Tension de référence, pour un courant de 100 mA, comprise entre	4/7	7/10	10/13	V
Courant de Zener max. Température du boitier à 75°C	270 165	180 105	150 90	mA mA
Surcharge instantanée pendant 0,01 seconde	900	600	500	mA

REMARQUE

Les valeurs des tableaux ci-dessus sont destinées à guider l'utilisateur, mais ne doivent pas être comprises comme tolérances de réception.

Cristons (semi-conducteurs) Transistors PNP au germanium (CETH.)

CARACTERISTIQUES MECANIQUES REPRESENTATION

DONNEES GENERALES

1 - GENERALITES

Les semi-conducteurs au Germanium C.F.T.H. dits transistors à jonction sont du type PNP. Ils sont montés en enceinte étanche et métallique leur assurant une grande stabilité dans le temps. Insensibles aux chocs, ils le sont également aux vibrations et à la lumière ambiante.

2 - PARAMETRES DU CIRCUIT EQUIVALENT

r ¿ = résistance dynamique (en courant alternatif) de l'émetteur, considéré comme une diode polarisée dans le sens direct.

rb = résistance physique de la matière de la base.

= résistance dynamique du collecteur, considéré comme une diode polarisée dans le sens inverse. = amplification du courant statique. Un générateur αίς aux bornes de la résistance du collecteur C peut représenter le rôle amplificateur du courant du transistor.

3 - PARAMETRES HYBRIDES h POUR SIGNAUX FAIBLES

Les paramètres hybrides ou pentes des courbes statiques dépendent du point de fonctionnement choisi.

h₁₁ (en ohms) = V₁/i₁ est la pente de la caractéristique d'entrée ou l'impédance d'entrée pour une tension de sortie constante (V₂ = 0); h₂₁ (rapport numérique) = i₂/i₁ est la pente de la caractéristique de transfert ou l'amplification de courant pour tension de sortie cons-

tante $(V_2 = 0)$; h_{22} (en microampères par volt) = i_2/V_2 est la pente de la caractéristique de sortie ou l'admittance de sortie pour un courant d'entrée

constant $(i_1 = 0);$

h12 (rapport numérique) = V1/V2 est la pente de la caractéristique de réaction ou le rapport de réaction de tension pour un courant d'entrée constant $(i_1 = 0)$,

4 - TABLEAU DE CORRESPONDANCE ENTRE LES PARAMETRES h et r (rb<r)

$$r_{\varepsilon} = h_{11} \cdot \frac{h_{12}}{h_{22}} (1 + h_{21}) = \frac{h_{11}}{h_{21}} \alpha = h_{21}$$

$$r_{b} = \frac{h_{12}}{h_{22}} = \frac{h_{11}}{h_{21}} = -r_{\varepsilon}; r_{c} = \frac{1}{h_{22}} = \frac{h_{11}}{h_{12} - h_{21}}$$

5 - DETERMINATION DE LA TEMPERATURE DE LA JONCTION COLLECTEUR TJ

a - Mesurer le courant de repos du collecteur (i e = 0) soit i co à une température conflué pour une tension V_C entre collecteur et base < 6 V.

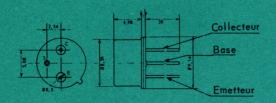
b - Le transistor étant en fonctionnement, couper les tensions d'alimentation et mesurer

immédiatement i_{CO} à une tension $V_C < 6$ Volts. **C -** Choisir sur la figure ci-contre, la courbe passant par les coordonnées obtenues au

paragraphe "a". **d**-Lire ensuite sur cette courbe la température correspondant au courant mesuré au paragraphe "b". C'est la valeur cherchée pour la température de la jonction collecteur. **Exemple** - $I_{CO} = 20 \, \mu$ A, TJ ambiante = 20°C (point A), I_{C} en fonctionnement = 500 μ A, TJ fonctionnement comprise entre 70 et 75°C (point B).

Température de la jonction collecteur en degrés centigrades

LIMITES ABSOLUES DES CARACTERISTIQUES 35T1, 36T1, 37T1 et 44T1


		.,,											
TYPES	UTILISA- TIONS	APPLICA- TIONS	Fréquence de coupure en MHz	Dissipation admissible au Collecteur à 25° C mW	Tension collecteur V	Tens, entre collecteur et base (émet, ouvert) V	Tens, entre col. etémet. (émet.com.) $\langle (RbE = 1MS) \rangle$ ($\langle (Ic = 600 \mu A) \rangle$	Tens, entre émet, et base (collecteur ouvert) V	Courant collect, mA	Courant émetteur mA	Tempér, de fonctionnem, °C	Tempér, de stockage ° C	Forme (voir ci-dessus)
35T1	Ampli. M.F.	Commutation	8	100	-5	-20	-0		-50	50			1
36T1 (2)	Oscillateur Changeur	Ampli. à fort	8	100	-5	-20	-9	•	-50	50			1
37T1 (1)	de fréquence	niveau	10	100	-5	-14	-7		-50	50	252.00		1
44T1 (3)	Push-pull de sortie Classe B	Classe B puissance 2 W eff.		400	•	-45	-12 Rεb = 1kΩ	-5	500				2

(2) - en PO, et GO. Utilisé également comme amplificateur M.F.

^{(3) -} Ce type doit être monté sur une plaquette de laiton de surface minimum 70×70 mm, d'épaisseur 1 mm pour dissiper 400 milliwatts. Le boitier est isolé du châssis par l'intermédiaire d'une rondelle de mica d'environ 0,1mm d'épaisseur enduite de graisse silicone Le transistor est fixé au châssis au moyen de 2 vis traversant l'ailette de refroidissement et isolées du chassis par 2 rondelles d'ARAL-DITE à épaulement.

Cristons (semi-conducteurs) Transistors PNP au germanium (C.F.T.H.)

CARACTERISTIQUES MECANIQUES ET REPRESENTATIONS

TRANSISTORS HAUTE - FREQUENCE

Types MESA par tirage, PNP au germanium (C.F.T.H.)

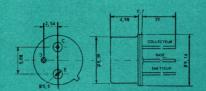
Série radio AM:

- 155 T 1 (oscillateur-mélangeur PO/GO/OC) - 154 T 1 (moyenne fréquence PO/GO/OC

Série radio AM/FM:

- 157 T 1 (préamplificateur haute-fréquence)
- 156 T 1 (oscillateur-mélangeur)
- 155 T 1 (1er étage à fréquence intermédiaire)
- 154 T 1 (2e et 3e étage à fréquence intermédiaire)

Caractéristiques communes aux types 153 T 1, 154 T 1, 155 T 1, 156 T 1, 157 T 1.


Limites absolves d'utilisation à 25° C			Unités
Dissipation admissible au collecteur*	Pc	30	m W
Tension collecteur émetteur maximum avec une résistance de 1 M Ω	091983503	IC HARMELT	
entre base et émetteur	VCER	- 9	V
Tension collecteur base maximum, émetteur débranché	V _{CBO}	- 9	V
Courant collecteur maximum	Ic	5	m A
Température maximum de la jonction	T _{Jmax.}	85	° C
Température de stockage	T _s	- 65 + 100	o C
* Diminuer de 0,5 mW par °C d'augmentation de température au-dessus de 25°C		THE WATER TO SE	

Caractéristiques moyennes pour $1_c = 1 \text{ mA}$ $V_{CE} = -9 \text{ V}$		153 T 1	154 T 1	155 T 1	156 T 1	157 T 1	Unités
Gain en courant continu, montage émetteur commun	h _{21E}	30	30	40	50	50	
Fréquence F1 pour laquelle h21F = 1	F ₁	45	70	70	90	90	MHz
Courant inverse base commune, émetteur débranché	Ico	0,5	0,5	0,5	0,5	0,5	μΑ
Courant inverse émetteur, collecteur ouvert (V _{EBO} - 0,5 V)	I _{E0}	0,25	0,25	0,25	0,25	0,25	μΑ
Gain en puissance théorique f = 500 kHz		45				20973	d B
f = 10,7 MHz			35				dB
Gain en courant f = 10 MHz	h21e			6	7 min.	7 min.	
Rapport de réaction de tension $f = 1 \text{ MHz}$	h _{12b}	2.10 ⁻³ max.	0,8.10 ⁻³	0,5.10-3	0,4.10-3	0,4.10-3	
Capacité collecteur base	Ch'c	of all with	Voeve	80/10	2	2	pF

Remarque : Les valeurs des tableaux ci-dessus sont destinées à guider l'utilisateur mais ne doivent pas être comprises comme tolérances de

Cristons (semi-conducteurs) Transistors PNP au germanium (c.f.t.h.)

MECANIQUES CARACTERISTIQUES REPRESENTATION

TRANSISTORS BASSE - FREQUENCE

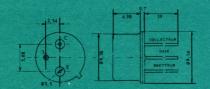
Type PNP au germanium (C.F.T.H.)

Ces transistors par alliage sont spécialement conçus pour la préamplification des fréquences acoustiques dans les meilleures conditions de rapport signal sur bruit. Correspondance avec

les anciens types

 $\begin{array}{l} 2 \text{ N } 322 = 990 \text{ T } 1 \\ 2 \text{ N } 323 = 991 \text{ T } 1 \end{array}$

LIMITES ABS	OLUES D'UTILISA	TION A 25°C	male ne differente miter
Dissipation admissible au collecteur * Tension entre collecteur et émetteur Courant collecteur Température maximum de la jonction Température de stockage	PC	140	mW
	VCE	- 16	∨
	IC	-100	mA
	TJ	60	°C
	Ts	85	°C


^{*} Diminuer de 4 mW par °C d'augmentation de température au-dessus de 25°C.

CARACTERISTIQUES MOYENNES		2 N 508		2 N 32	2		2 N 323	3	2 N 324			11 (12-1
A 25°C		Caract	Disp	ersion	Caract	Disp	ersion	Caract	Dispe	ersion	Caract	Unité
A 25°C		moyen	min.	max.	moyen	min.	max.	moyen.	min.	max.	moyen.	7.5
Caractéristiques pour faibles sign Base commune : $V_C = -5 V$; $I_E = 1 \text{mA}$; $f = 270 \text{Admittance}$ de sortie (entrée à circuit ouvert)	Hz	0,5	0,1	1,2	0,6	0,1	1	0,42	0,1	0,9	0,37	wmho
Gain en courant (sortie en court-circuit) Impédance d'entrée (sortie en court-circuit)	h21b h11b		0,968			0,9778 26	0,9887	0,984	0,9839			Ω
Rapport de réaction de tension (entrée à circuit ouvert) Capacité de sortie (entrée à circuit ouvert)	h 12b	10	1	11	5	1	12	6,5	1	14	8	× 10-4
(f = 1 MHz) Fréquence de coupure	C _{ob}	22 3 , 5	2 9		22 2	(+)/(22 2,5	1 (¥ & s	JVO.	22 3	pF MHz
Emetteur commun : (V _C = -5 V; I _E = 1mA; f = 270 Hz) Admittance de sortie (entrée à circuit ouvert) Gain en courant (sortie en court-circuit) Impédance d'entrée (sortie en court-circuit) Rapport de réaction de tension (entrée à circuit ouvert)	h22e h21e h11e	3.000	0,31 30 812 0,6	7,5 64 2.187	2,7 44 1.396	4,6 44 1.180	88 88 2.900	26 64 1.180	59 60 1.530	120 120 4.150	90 81 2.250	μ mhos Ω
Caractéristiques statiques Gain en courant, émetteur commun (V _{CE} = -1 V; I _C = -20mA) Courant inverse collecteur	h21E	125			48			70	1600 10 V 1600 1600 1600 1600 1600 1600	ot salte auptione	90	
$(V_{CBO} = -16 V)$	I _{CO}	16			16		uib ele	16.	ne log ro	Hune- I	16	μΑ

Remarque : Les valeurs des tableaux ci-dessus sont destinées à guider l'utilisateur mais ne doivent pas être comprises comme tolérances de réception.

Cristons (semi-conducteurs) Transistors PNP au germanium c.f.t.

CARACTERISTIQUES **MECANIQUES** REPRESENTATION

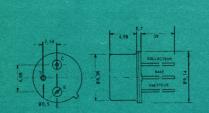
TRANSISTORS BASSE - FREQUENCE

Type PNP au germanium (C.F.T.H.)

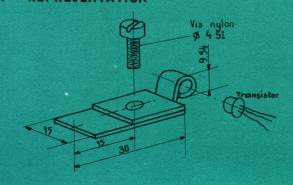
Ces transistors par alliage sont spécialement conçus pour répondre aux besoins de l'amplification des fréquences acoustiques. Ils présentent l'avantage de posséder un gain en courant constant pour des intensités collecteur variant de 1 à 200 mA.

Correspondance avec
2 N 319 = 987 T 1
les anciens types
2 N 320 = 988 T 1
2 N 321 = 941 T 1

LIMITES ABSOLUES D'UTILISATION A 25°C									
Dissipation admissible au collecteur * Tension entre collecteur et émetteur Courant collecteur Température maximum de la jonction Température de stockage	PC IC TJ Ts	240 - 20 -200 -85 85	mW V mA °C °C						


^{*} Diminuer de 4 mW par °C d'augmentation de température au-dessus de 25°C.

CARACTERISTIQUES MOVEMBES		2	N 319)		2 N 32	0				
CARACTERISTIQUES MOYENNES A 25° C		Dispe	rsion	Caract	Dispe	rsion	Caract.	Disper	sion	Caract.	Unités
A 25 C		Min.	Max.	moyen	Min.	Max.	moyen.	Min.	Max.	moyen.	
Caractéristiques pour faibles signaux : Base commune : $(V_C = -5 \text{ V}; \text{ I}_E = 1 \text{mA}; \text{ f} = 270 \text{ Hz})$ Admittance de sortie (entrée à circuit ouvert) Gain en courant (sortie en court-circuit) Impédance d'entrée (sortie en court-circuit) Rapport de réaction de tension (entrée à circuit ouvert) Capacité de sortie (entrée à circuit ouvert) (f = 1 MHz)	h22b -h21b h11b h12b	0,1 0,941 26 1	1,3 0,9762 36 10	0,65 20,968 31 4	0,1 0,968 26 1	1,2 0,984 35 11	0,6 0,9778 31 5	0,1 0,9778 26 1	1 0,9887 33 12	0,42 0,984 30 6,5	μmhos Ω × 10-4
Fréquence de coupure	fα			2		i a de la	2,5	400		3	MHz
Emetteur commun : ($V_C = 5 \text{ V}$; $I_E = 1 \text{mA}$; $f = 270 \text{ Hz}$) Admittance de sortie (entrée à circuit ouvert) Gain en courant (sortie en court-circuit) Impédance d'entrée (sortie en court circuit) Rapport de réaction de tension (entrée à circuit ouvert)	h22e h21e h11e h12e	1,69 16 440 0,56	5,4 41 1,554 9,57	1000	0,31 30 812 0,6	7,5 64 2.187 8	2,7 44 1.396 3,37	4,6 44 1.130 1,7	88 88 2.900 8	26 64 1.880 1	μmhos Ω × 10-4
Caractéristiques statiques Gain en courant, émetteur commun $(V_{\rm CE} = -1 V; I_{\rm C} = -20 \rm mA)$ $(V_{\rm CE} = -1 V; I_{\rm C} = -100 \rm mA)$ Courant inverse collecteur ($V_{\rm CBO} = 25 V$) Courant inverse émetteur ($V_{\rm CBO} = -3 V$)	h21E h21E ICO IEO			33 30 16 10			48 44 16 10			80 70 16 10	. μΑ μΑ
Résistance thermique: Température de la jonction puissance totale dissipée A l'air libre Sur ailette infinie Sur plaque de refroidissement de 6 cm2 à l'air libre	R _{th}			0,25 0,11 0,2			0,25 0,11 0,2			0,25 0,11 0,2	°C/m °C/m


Remarque : Les valeurs des tableaux ci-dessus sont destinées à guider l'utilisateur mais ne doivent pas être comprises comme tolérances de

Cristons (semi-conducteurs) Transistors PNP au germanium (c.f.t.h.)

CARACTERISTIQUES MECANIQUES ET REPRESENTATION

TRANSISTORS BASSE - FREQUENCE

Type PNP au germanium (C.F.T.H.)

Ces transistors basse fréquence par alliage sont destinés spécialement aux circuits de sortie pour amplificateurs de moyenne puissance.

Le montage sur clips donnant une dissipation accrue permet sur cette catégorie de transistors de driver facilement tous les étages à à grande puissance.

Puissance de sortie en push-pull sous 9 volts : 1,2 watt.

LIMITES A	BSOLUES D'UTILISA	ATION A 25°C	
Dissipation admissible au collecteur avec clips Tension entre collecteur et base Tension entre collecteur et émetteur Courant collecteur Température maximum de la jonction Température de stockage	PC VCB VCE TJ T _S	400 - 20 - 20 400 85 - 65 à + 100	mW V WA °C °C

CARACTERISTIQUES MOYENNES A 25°C			125 T			126 T 1			127 T			
		Dispe	Dispersion		Dispe	rsion	Caract.	Dispersion		Caract	Unités	
A 23 C		min.	max.	moyen	max.	min.	moyen.	min.	max.	möyen.		
Caractéristiques pour faibles signaux :												
Base commune : $V_C = -5 V; I_E = 1 \text{mA}; f = 270 \text{Hz}$ Admittance de sortie (entrée à circuit ouvert) Gain en courant (sortie en court-circuit) Impédance d'entrée (sortie en court-circuit) Rapport de réaction de tension (entrée à circuit ouvert) Fréquence de coupure	h22b h21b h11b h12b f α	0,1 0,968 26 1	1,2 0,984 35 11	0,6 0,9778 31 5 2	0,1 0,9778 26 1	1 0,9887 33 12	0,42 0,984 30 6,5 2,5	0,1 0,983 26 1	0,9 0,9925 31 14	0,37 0,987 29 8 3	μmhos Ω × 10-1 MHz	
Emetteur commun : $(V_C = -5V;\ l_E = 1\text{mA};\ f = 270\text{Hz})$ Admittance de sortie (entrée à circuit ouvert) Gain en courant (sortie en court-circuit) Impédance d'entrée (sortie en court-circuit) Rapport de réaction de tension (entrée à circuit ouvert)	h22e h21e h11e h12e	0,31 30 812 0,6	7,5 64 2.187	2,7 44 1.396 3.37	4,6 44 1.180 0.6	88 88 2.900 8	26 64 1.880	59 60 1.530 0.53	120 120 4.150 12	90 81 2.250 6	μmhos Ω × 10-4	
Caractéristiques statiques: Gain en courant, émetteur commun $(V_{CE} = -1 \text{ V; } I_{C} = -20 \text{ mA})$ $(V_{CE} = -1 \text{ V; } I_{C} = 100 \text{ mA})$ Courant inverse collecteur $(V_{CBO} = -16 \text{ V})$	h _{21E} h _{21E} l _{CO}	30		48 45 16	47		70 66 16	65		90 86 16	μΑ	

Remarque: Les valeurs des tableaux ci-dessus sont destinées à gui der l'utilisateur mais ne doivent pas être comprises comme tolérances de réception.

Répertoire général des Cristons (semi-conducteurs-C.F.T.H.)

	T .			
TYPES	TYPES SW A		UTILISATIONS	NATURE
1N48	52	{	Détection F.M., antiparasitage T.V. comparateur de phases.	
1N63	52		Usages généraux	Diodes au germanium
1N64	52		Détection video-fréquence	
1N65	52		Usages généraux	
2N319	58	987T1	B.F.	
2N 320	58	988T1 {	Amplification de fréquences	Transistors PNP au germaniu
2N321	58	941T1	acoustiques	
2N 322	57	990T1	B.F.	
2N323	57	991T1	Préamplification de fréquences	Transistors PNP au germaniu
2N324	57	992T1	acoustiques	
2N 508	57	965T1		
35T1	55		Ampli M.F.	to the second se
36T1	55	}	Oscillateur, changeur de fréquence	Transistors PNP au germaniu
37T1	55		Oscillateur, changeur de fréquence)
40J2	53		T.V. montage doubleur	Diode au silicium
40P1	52	Harry H	Détection radio et VCA avec polarisation	Diode au germanium
41J2	53		T.V. montage doubleur	Diode au silicium
42J2	53	martine i	Redresseur basse-tension	Diode au silicium
44P2	53		T.V. antiparasitage, séparation de tops	Diode au silicium
44T1	55		Push-pull de sortie - classe B	Trans. PNP germanium
45P2	53		T.V. antiparasitage - séparation de tops	Diode au silicium
46P1	52	AND THE PARTY OF T	Détection radio et VCA (montage classique)	Diode au germanium
46P2	53	1	T.V., antiparasitage	Diode au germanium
47P2	53	}	séparation de tops	Diodes au silicium
48P2	53		Separation de tops	
125T1	59		B.F Sortie pour amplificateurs	
126T1	59	(Transistors PNP au germanium
127T1	59		moyenne puissance	
153T1	56		17 The Table Transaction of the Control of the Cont	
154T1	56)	H.F., série radio AM	
155T1	56	2571	ou AM/FM	Mesa par tirage
156T1	56	25T1)	ou run, run	PNP au germanium
Mark Street Control of the			H.F., série radio AM/FM	Street and the second street and the second
157T1	56			
406Z4	54		Régulation de tension dans des conditions	Diodes Zener
409Z4	54)	sévères de température	au silicium
412Z4	54			
456Z4	54)	Régulation de tension dans les conditions	Diodes Zener au silicium
459Z4	54		sévères de température. Dissipation de puis-	sur embase filetée
462Z4	54	20.1	sances importantes)
on the not good.	.91			
	-			
in pure of recent to	9 772	Street son		

III

Ferrites électroniques

"FERRINOX"

(COMPAGNIE DES FERRITES ÉLECTRONIQUES)

Ferrites électroniques "Ferrinox"

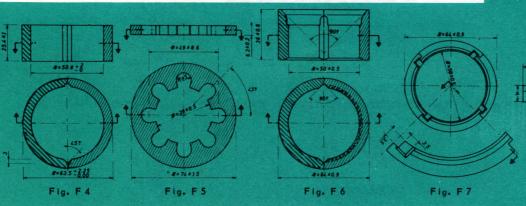
DE LA "COMPAGNIE DES FERRITES ÉLECTRONIQUES"

GENERALITES, UTILISATIONS ET MARQUAGE

Les pièces appelées "FERRINOX", de la Compagnie des Ferrites Electroniques, sont élaborées à partir d'un certain nombre de compositions à base d'oxydes métalliques de la famille des ferrites magnétiques doux.

Ces pièces correspondent par leurs formes et leurs qualités aux exigences les plus récentes de la technique des récepteurs de radiodiffusion et de télévision.

Il existe deux types de "FERRINOX":

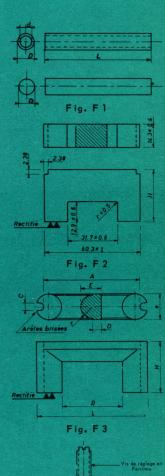

- le type H dont la perméabilité est inférieure à 1.000 et prévu pour la gamme de fréquençes comprise entre 150 kilohertz et 60 mégahertz;
- le type B dont la perméabilité est égale ou supérieure à 1.000 et prévu pour la gamme de fréquences comprise entre 100 et 700 kilohertz.

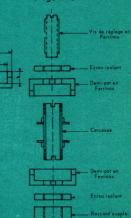
Les "FERRINOX" B et H se présentent généralement sous les formes suivantes :

- Tubes et microbâtonnets (fig. F 1) pour selfs d'arrêt, noyaux plongeurs, ...;
- Barreaux d'antennes de section circulaire, elliptique ou rectangulaire;
- Circuits de transformateurs pour transformateurs d'impulsions ou T.H.T. forme en U soit à section carrée (fig. F 2), soit à section circulaire (fig. F 3),

forme en E;

- Bagues de déviation pour cathoscopes à déviation de 70° soit en deux parties (fig. F 4) soit crénelée (fig. F 5), de 90° soit en 2 parties (fig. F 6), soit en 4 parties (fig. F 7) et de 110° (fig. F 9) en 2 parties.




MARQUAGE

Barreaux d'antenne: marquage par points suivant le code ci-dessous:
 Noyaux T.H.T. et bagues de déviation: marquage en clair.

MATERIA	J							(0	D	E										
H 19	• •	,	•	,		•		•	•		•		•		•		•		•	•	
H 20	• •		•					9	0	•		0			•	•		9	•	3	•
H 30								•			•			•	•		9	•			
H 50			•	9				•	•	•	•	•	•			•	•	•			
D 01	• •		•		•	4		•		•					•	•		•			9
B 21							•	•										9			

Prière de nous consulter sur les caractéristiques des différents types de ces fabrications.

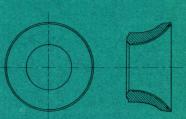


Fig. F8

Fig. F9

Publications techniques MAZDA "Tubes électroniques"

HANDBOOK MAZDA-RADIO

Documentation permanente à feuillets mobiles; 3 volumes sous reliure format 13×18. Donne de façon très complète, pour chaque type de tube de notre fabrication, le détail des conditions d'utilisation, les réseaux de courbes, des schémas. Les feuillets de mise à jour sont adressés périodiquement aux abonnés.

TABLEAUX D'ÉQUIVALENCE

1° - Entre les tubes électroniques d'origines et de types divers et les tubes figurant
à notre catalogue. Présenté sous forme d'un répertoire mural.

2° - Tableau d'équivalence des semi-conducteurs.

CAHIERS MAZDA-RADIO

Tubes Electromètres Mazda.

Utilisation des thyratrons Mazda 2 050 F et 2 D 21.

Conditions d'emploi des stabilisateurs de tension OA 2 et 6073. OB 2 et 6074.

Utilisation des tubes batteries (chauffage direct, série 50 mA). (épuisé)

Télévision 1962.

Etude des conditions pratiques du balayage vertical des cathoscopes. (épuisé)

L'ÉLECTRONIQUE COMMANDE LA VIE MODERNE

Tableau des applications de l'Electronique.

Mesures de longueurs ou d'épaisseurs.

Mesure et régulation de température.

Dispositifs électroniques à commande photoélectrique. (épuisé)

Les détecteurs électroniques de métaux.

L'électronique dans les procédés de mesures photoélectriques. (épuisé)

Les pH mètres électroniques.

Mesures du niveau des liquides. (épuisé)

Les Ultrasons. Production. Applications.

Les temporisateurs électroniques.

Les applications de l'électronique aux méthodes d'extensométrie.

Le pesage électronique. (épuisé)

Méthodes électroniques de dosage et d'analyse.

Applications de l'électronique aux arts graphiques.

Mesure des temps.

La télévision industrielle.

Les demandes sont à adresser au :

CONDITIONS GENERALES DE VENTE

PRIX - Tous les marchés et commandes ne sont acceptés que sous la condition qu'en cas de variation des prix et conditions de vente, les prix et conditions applicables seront ceux en vigueur à la date de la livraison, le client conservant par contre la faculté, au moment de la notification des nouveaux prix et conditions, de résilier la partie de la commande qui ne serait pas encore livrée.

Pour les marchés passés avec les administrations publiques ou privées, une formule de révision de prix pourra être utilisée suivant la nature du matériel (nous consulter).

EXPEDITIONS - Les plus grands soins étant apportés à nos emballages, nos marchandises voyagent aux risques et périls du destinataire qui doit faire supporter les avaries de route au transporteur ou agir contre lui le cas échéant.

RETOURS - Lorsque, exceptionnellement, nous acceptons des retours de marchandises, ils doivent toujours nous être faits franco dans la huitaine qui suit la date de notre accord. Les marchandises qui nous sont retournées ne sont reprises que si elles nous parviennent dans l'état où nous les avons fournies. Pour régulariser les écritures, nous ne donnons crédit des marchandises que lorsqu'elles sont rentrées dans nos magasins et que nous les avons acceptées, sous réserve que la facturation ait été faite par nous-mêmes.

Les Tribunaux de la Seine seront seuls compétents en cas de litige. Nos traites ou acceptations de règlement n'opèrent ni novation, ni dérogation à cette clause attributive de juridiction.

CARACTERISTIQUES DETAILLEES ET PRIX SUR DEMANDE.

AGENCES, MAGASINS ET DEPOTS

MAGASINS ET DÉPOTS DE LA RÉGION PARISIENNE

MAGASIN « SAINT-DENIS ». - 101, rue du Faubourg-Saint-Denis (10°). Tél. : TAI. 53-43.

LA POLYPHONIE. — 116, cours de Vincennes (12e). Tél. : DOR. 66-25.

OPTIKA. — 33, rue Traversière, Montreuil. Tél.: AVR. 51-14.

PROJECTONE. - 48, rue Bayen (17°). Tél. : GAL. 80-48.

ETS MOREAU-MARTIN. — 11, boulevard Saint-Marcel (13°). Tél. : GOB. 22-74.

REGENT RADIO. - 32, avenue Gambetta (20°). Tél. PYR. 80-80.

ETS VOLTOR. - 4, impasse Saint-Claude (3°). Tél.: TUR. 39-76.

ARMOR ELECTRIC. — 39-41, rue des Cloys (18°). Tél. : ORN. 19-76.

ETS M.G.M. - 24, rue d'Estienne-d'Orves, Courbevoie. Tél. : DEF. 32-61.

PLAISANCE. - 133, rue de Sèvres (6°). Tél. : SUF. 30-92.

M.C.T. - 89, avenue de Paris, Saint-Mandé. Tél. : DAU. 47-79

M. GOETZ. — 9, place Square-Pierre-de-Geyter, Saint-Denis. Tél. : PLA. 46-83.

M. LEMESLE. - 47, rue de Montreuil, Versailles. Tél. : VER. 28-71,

M. PRESNE. - 13, rue Michaud, Gennevilliers. Tél.: RED. 09-11.

AGENCES DE PROVINCE

ILE-DE-FRANCE. — Agence Régionale de l'Ile-de-France : Compagnie des Lampes, 33, avenue de la République, Paris (11°).

BORDEAUX. - Agence Régionale du Sud-Ouest : Compagnie des Lampes, 24, chemin Roustaing, Talence (Gironde).

CLERMONT-FERRAND. — Agence Régionale du Centre : Compagnie des Lampes, 20, rue Blatin.

DIJON. — Compagnie Générale d'Electricité, 4, rue Montmartre.

GRENOBLE. - Compagnie Générale d'Electricité, 2, avenue G.-Péri, St-Martin-d'Heres.

LILLE. - Agence Régionale du Nord de la France : Compagnie des Lampes, 19, rue d'Avesnes.

LIMOGES. - Compagnie Générale d'Electricité, 17, rue de Châteauroux.

LYON. — Compagnie Générale d'Electricité, 36, rue de la Part-Dieu.

MM. Pellet & Solignac, 301, rue Duguesclin.

MARSEILLE. — Agence Régionale du Sud-Est : Compagnie des Lampes, 108, rue Breteuil.

Compagnie Générale d'Electricité, 65, avenue du Prado.

NANCY. — Agence Régionale de l'Est : Compagnie des Lampes, 53, avenue Foch.

NANTES. — Agence Régionale de l'Ouest : Compagnie des Lampes, 9, rue Bergère.

Compagnie Générale d'Electricité, 4, rue Linné.

NICE. - Compagnie des Lampes, 8, rue Niepce.

Compagnie Générale d'Electricité, 5, rue Cronstadt.

ROUEN. — Agence Régionale de Normandie : Compagnie des Lampes, 48-50, rue du Renard.

SAINT-ETIENNE. - Compagnie Générale d'Electricité, 7, rue Balzac.

M. Berger, 13, rue Blanqui.

M. Tessier, 7, rue Palluat-de-Besset.

STRASBOURG. — Agence Régionale d'Alsace : Compagnie des Lampes, 8, rue Finkmatt.

TOULOUSE. — Agence Régionale du Sud : Compagnie des Lampes, 2, rue Delacroix.

Compagnie Générale d'Electricité, 14, rue Bayard.

ALGÉRIE

ALGER. — Société Alsthom, 1, rue Denfert-Rochereau. Tél. 300-56 et 300-57. Compagnie Générale d'Electricité, 12, boulevard Auguste-Comte. Tél. 647-95.

ORAN. — Société Alsthom, 17, avenue Emile-Loubet. Tél. 249-91 et 92.

Compagnie Générale d'Electricité, 34 ter, boulevard Hippolyte-Giraud. Tél. 331-32 et 33

DÉPARTEMENTS D'OUTRE-MER

MARTINIQUE ET GUADELOUPE. - M. Hugé, B.P. nº 59. Fort-de-France (Martinique).

GUYANE. - M. Hugé, B.P. nº 59. Fort-de-France (Martinique).

COMPAGNIE DES LAMPES - 29. RUE DE LISBONNE - PARIS-8°

S. A. AU CAPITAL DE 13.680.000 NF - TÉL. : LAB 72-60 à 72-68 - ADR. TÉLÉGR. MAZDALAMP-PARIS - R.C. SEINE 54 B 5088

Réf. 87-56

CARACTÉRISTIQUES DÉTAILLÉES ET PRIX SUR DEMANDE

Février 1962 Imp. Artra - Paris